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" ABSTRACT

The work presented here demonstrates the use of direct
method of caléulus of variations to solve circuit design problemé,
In particular, a technique is developed for the synthesis and
deéign‘of a distributed parameter system guiding waves from one
point in space to another, The parameter distributions are
assumed to be unrestricted except for the upper.and lower bounds
resulting from the imposition of practical realizability., The
problem is similar to the "sensitivity" problem encbunfered in

“the optimal control of the sysfems;{ ’n improved version of the
First Order Gradient Technique is used to obtain the optimai
distributiéns of {he bérémeters. fhe-First Order Grédient
Technique is sensitive to the form of the arbitrary distributions
assumed at the start of the iterations. This technique has serious
convergence problems associated with it. The problem is particu-
+ larly severs and is encountered in the "singular" optimal control
problems., The algorithm devised here improves the first Order
Gradient Technique so that it becomes less sensitive o the
initial assumed distributions and virtually eliminates the
convergence problems generated because of the bounds on the para-
‘meter distributions,

A transmission line with distributed series rf and shunt c
is a particular case of the distributed parameter system, The
optimal design of;a distributed rc filter for the feedback

circuit of an oscillator and the optimal design of a notched

*



v
filter employing a thin film circuit’'is a successful example of
the application of the Improved Gradient Technique. These

distributions have been obtained by the use of a Hybrid Cémputer.
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" CHAPTER 1

1.1 Introduction
. Problems in the field of net%ork synthesis with lumpéd para~i

meters have been deéit with quite ex?eﬁsively'iﬁ the existing
literature concerning éircuit theory., )

Systems with distributed parameters, speqifically transmission
lines with a known distributiogvof resistance, capaéitaﬁce, and
inductance, have been analyzed. Hohever,’fhé field of direct
synthesi§ of systemsfwith.distributed parameters is felatiQely A
unexpiored as scems évident from a fewfsﬁudies éhat have bgen
recently reporfed [1?2,3;4]. :- . . R

Most of the systems that ffansmitlsignéis, such'aé a trans-
-mission line carrying electrical signél, a micrdwave.channei carry-
ing electromagnetic wave, an acoustic horn transmitting sound waves,
or a blood vessel transmitting blood, are basically distributed

parameter systems. Since the advemnt of thin-film circuits the

synthesis problem has been introduced into the miniaturized circuitry.

-

Thin fiim circuits are replacing the lumped components due to the
requirement of

1) microminiaturization
and 2) modular construction.

A number of materials have been used for thin-film resistors

such as vacuum deposited nicrome, sputtered tantalum, vacuum
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depositéd metal oxides, etc., Thin~film capacitors are fabricated

by evaporating a high dielectpic material on to a resistive path ;
and covering it with another layer of‘conducting film. The
dielectric layer may be formed by oxidization, e.g..silicon diogide.-'
.Theée various techniques enable us té realize nonuniform distribu~
tions. This can be achieved by controlling the physical dimensions
of the films, At very high frequencies it becomes neceésary to
take into consideration the effect of the distributed inductance.
There exists a definite possibility of shaping the distributions
so as to opt%mize the performance of the system in which they are
used. Our aim is to develop a technique for optimal synthesis.
In the synthesis problem the viewpoint_is maintainea that the
energy is guided from one point to another in an integrated circuit
.and the distributed parameters are determined as-a function of
distance so as to achieve minimization of a cost functional. The
bounded but otherwise unrestricted distributions thgt we may have
to consider thleihandling the synthesis problem fall into the
category of nonuniform transmission lines. The problem we address
ourselves to is the optimal synthesis of nonuniform transmission
lines with bounded but otherwise unrestriEted distribufions._
Ekstrom [5] formulated a transfer matrix for'such a trans-
mission line. However, for a general distribution -the gatrix can-

not be evaluated. Ekstrom [6] solved the system for an exponential

distribution of the parameters and obtained the transfer impedance



3
matrié. Castro and Happ [7] analyzeé various configurations of rc
thin~films with uniform distribution and derived transfer matrix
for each case, The differential equations for the tapered trans-.
mission line have been solved in the frequency and the time domain
for exponential ana linear tapers t8,9]. Su [10] analyzed the rc
line with $in? and Csc? distributions. ’

The. synthesis problem for the phase shift oscillator was
cdnsidere@ by Edson [11]. Edson assumed an expohential taper and
analyzed the problem in the frequency domain to obtain the gain

of the line under the condition of 180° phase shift., The technique

3

used was to assume an exponential distribution of the type

. -
r = Re"™, - ¢ = cet™

3 with an unknown parameter "m", Then the

differential equafibns were solved in the frequency domain in order
to evaluate the performance for various valueé of "m% and.the data
“-achieved by this analysis was used for synthesis.
The problem in its true perspective was first taken up by
Rohrer, Resh and Hoyt [1]. The general problem tackled_in their
-paper is that of generating a distributed network from a given class
which yields the best approximation to a desired time or frequency
domain input output relationship. It sbouldAbe noted that no
restrictions have been put on the form of the-d;stribution of the
parameters except that the parameter values are bounded to take
intb account the problem of feasibility of building the circuit,

The approach here has been basically different than the synthesis

-



techniques used in the past, in that ‘their aim is to determine

the distribution of parameters so as to minimize in the integral
square sense the error between ideal output and the outpuf of ther
rc line. This technique resembles the optimal parameter control‘
for'distributed systems, The above paper used the indirect method
of caiculus of variations for minimization gnd ends up ggtting a
set of integral equations. An iterative technique has been used
[2j to solve these integral eﬁuatibns. Wohler, Kopp and Moyer [3]
used a direct method of calculus of variations to obtain solutions
to the impedance matching problem for a lossless transmission

line.

o«
.

The aim of the present work is to deveiop a feasible technique
tomgbtaiﬁ4tﬁe>distri5ﬁ£ions of parameferé which optimize a
specified criterion, and to solvé some hitherto unsolved practical
problems, such as a feedback circuit for the oscillator and the

notched filter,



1.2 Statement of the Problem

For the integrated circuits interstages between active devices
are typically series r,t - shunt ¢, distributed networks as shown

in Figo 1.1,

£ rexy Lexy
c—-——-—-——'—wsh—m‘s\——-—————e
inp& T cex mﬁé*t
R r. —
a -0
FIGURE 1,1

A DISTRIBUTED SERIES r, - SHUNT ¢ CIRCULT

The frequency domain synthesis problem caﬂ be stated as,
follows, _

Given the source voltage a(O,w) cos fwf.+‘9(0,m)i over the
frequency interval (-«,=), find a series r,% and shunt ¢ distri-
buted network of length L which causes the output voltage
a(L,w) cos (uwt + G(L,m)) to be the best approximation to the desired
output voltage ad(L,m) cos (wt + 8(L,w)) over the frequency interval
(~=,o), By letting 6(L,w) be free, we are requiring the match only
in the magnitude of the frequency characteristics between the
desired and actual output voltages. A further demand is thaf the
element values be chosen from within some physicall& obtainable
set, i.e. practical fealizébility dictates minimum and maximum
values of r(x) and c(x).

Using the concept of the frequency response transfer function,



the absolute value of the system gain can be defined as,

= ollyw) .2,
lG(m)[ —.—._L“G(O,w) (1.2 1)

One can specify the desired frequency response [Gd(m)[ . Thus
we seek the distributions that give the best approximation to
the specified frequency response [Gd(m)] for any ipput v(0,0).
The system equations governing the.relafionship between the
voltage and current in Fig. 1.2 are partial differential equa-

tions in time and speace.

; r(xydx Ly dx x4 dx
O = ==c - A SEETEB —— = — — .

T {ext) ’ } o
nput o v — - cundx output
o~ - - ' o e
FIGURE 1,2

A SECTION OF A DISCRETIZED SERIES r, - SHUNT ¢ CIRCUIT

A [v(x,t)] + p(x)ilx,t) + 2 [ilx,t)] = O ,
IX : 3t

(102.2)
%__ [i(x,t)] + c(x%&E.[v(x,t)] = 0, (1.2.35

The driving function v(0,t) is assumed to be a co-sinusoidal
input at a frequency w. Linearity and time invariance of para-

meters r,c and & assure the presence of only one frequency '"w'",

1

Thus' we can assume’ a steady state solution of the form

lSchelkun§ff [12] shows that the partial differential equa-
tion for nonuniform transmission lines are separable in time and
space. '
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v(x,t) = a(x,w) cos (wt+e(x,w)) Vléx,m) cos ut + V2(g,w) sin wt,

i(x,t) = Il(x,m) cos wt + IQ(X,w} sin wt,
where 8(x,w) = tan Volx,w) specifies the phase angle of the

o 2, 2
voltage as a function of x, and al{x,w) = (Vl(x,m) + V2(x,m))l/2
gives the amplitude of the voltage along the line. Substituting
this solution into the equation (1.,2,2) and (1.2.3) we obtain time

independent state equations

%_}_{_V-l(x,m) = =2(x)1 (x30) = wh(x)L,(%,0) ='f; '
%;VQ(x.m) = “P(X)IQ(ng);ffwi(XjIl(Xiw) =~f2 s )
g.}.{.zl(x,m)’ = —ue(x)V, (%) = £,
g.x_x2(x,m) = we(x)V) (%,0) = £y (12.)

The presence of "u" as an independent variable for Vl’ Vos Il’ 12
- identifies these system variables as trajectories for an input at
frequency "w".

Since the behavior of the ratio of the output and the input

voltages is of interest,; one can specify the voltage at either

end of the line., Without any loss of generality we can specify,

Vl(L’m) a 9 i

0. (1;2.5)

V2(L,w)

Y
where "a" is a nonzero constant. We assume an open circuit at the

output end implying thereby



H
(o)
w»

Il(L,w)

Iz(L,w) 0. (1.2.6)

For any known load admittance

YL = Yr + ¥

where Y,, is the real part and Ym is the imaginary part of the
complex admittance YL’ the terminal current is

Il(L,m) = aYr,

12(L,w) = a¥,.

The desired frequency response may be low pass, band pass, or

may have any generél form as in Fig. 1.3,

| Gl
4

W
FIGURE 1.3

AN ARBITRARY 'DESIRED' FREQUENCY RESPONSE CHARACTERISTICS.

. s s |
In order to obtain an approximation to such a response one can
e : ‘
) i
formulate a quadratic functional

) 2 N 2 .
- ¢ o= _Lodfegl@] - [6 tw)] e (1.2.7)

Noting from (1.2.5) that v(L,w) has been completely specified,
|
[G(m)[, as defined in (1.2.1) becomes a function of v(0,w) alone,

!

1



2 2
F(V,(0,0), V,(0,0)) = |6 ()] - |a(w)] I
We can rewrite the criterion functiom

¢ = _{:or[vl(ogw)b v2(0gw)]dw ° (102'8)
Our aim is to find‘out r(x) and c(x) such that ¢ is mininized.

The inductance 2(x) is assumed to be a non~-controllable parameter.
: i
Its value is decided by the geometry of the circuit.
|
Defining the state variable y as

i1
- . i

\
1 ;
V2 !
y = !
1, .
Il » ! (1.2.9)
S L
We can restate the problem as: '
given &y = ay = f(u,y) , (1.2,10)
dx i .
where the matrix
[ o 0 “r(x) f ~u2(x)
A= 0 0 ;mz(x)f -r(x)
! f
0 ~we(x) 0 : 0
! i '
| vt 0 O

(1.2.10a)
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with the boundary conditions

ikl = yb o= [a,0,0,00 (1.2.11)
'find‘uzuoptimal such that

7= m\iln.é' Y Loy (1.2.12)
whefé2

o = {: F(yl(o,w), y2(0,m5)dw o (1.2.13)

.and the control vector
r{x)

u. : - - ° . . -4.4.,._ .-

c(x) . - . ,

subject to the inequality constraints S

u

_umin s ulx) 2 max ’ (l 0.2 J1h)
implying

Pmin < r(x) = Thax  °?

cmin 5 C(X) .<_ o3 . (112015)

max

The control vector u enters the system equations (1.2.10) in
a linear manner and is tctally absent:from the‘criterion function
(1.2.13)., As a result we have what is termed in optimal control
theory "a singular problem" [13]. The optimal control satisfying

(1.2.12) may be

%p may be a function of y(0,w) in general.
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(i) bang bang type, mqaning thereby that u may be uy or u
with step transition or switching (Fig. 1.,%) or ‘

(ii) limiting control with singular switching curves
(Fig. 1.5) or

(iii) staying entirely within the open region and not reach-
ing tﬁe boundaries,

The mathematical tools available for téckling this problem
can be categorized as follows:

(i) The first group consists of the approaches based on
obtaining a set of necessary conditions for optimalify} These may

be the Euler Lagrange differential equations, with mixed boundary

conditions obtained from the transversality relationship; or a

set of first order state and adjoint éifféféﬁfiéi equations with
mi#ed boundary conditions derived from the Maximum Principle, or
a Hamilton-Jacobi type partial differentiq; equation derived by
using Bellman's approach of DynamiC«Progfamming. If one can some-
how find the analytic solution to these set of equations, one may
have found the control that optimizes the criterion functional
(very rarely does one ufilize the critérion for sufficiency).

In the numerical analysis aimed at obtaining the approximate
. solutions to the set of necessary conditions,some kind of
iterative procedure is used., However, the successive iterations
are not geared to bbtaining uniformly decreasing values of (J-$ ).
Yor example, in solving a two point boundary value problem the

successive iterations may monotonically reduce the difference
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#

oo

. FIGURE 1.4
A BANG BANG TYPE CONTROL

L

X >

'FIGURE 1.5

A LIMITING CONTROL WITH'SWITCHING CURVES
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between the specified boundary values and the ones that are
obtained during iterations. But this does not necessarily imply
that the approximate solutions generafed during the itefafions*
will monotonically improve~the criterion functional. Thus the
.approximate solutions to the set of necessary'conditions may not
be approximately optimal in the sense that (J-¢) may not, be small
enough to call the trajectories approximately o;%imal.

(ii) The alternate approéch is to use one of the direct
methods of calcuius of variations and seek gradual imprpvement in
the cfiterion'functional. The method is known as "éradient
Technique" [1u4], "Relaxation Metho&“, or "Hill Climbing Technique",
It is like climbing a hill in foggy weather, by estimating the
terrain in the neighborhood of the presenf pésition and proceeding
in the steepest upward direction inAorder to reach the "highest"
altitude. Every step improves the position. To be more specific,
one assumes an arbitrary non-optimal u and then seeks a stepwise
improvement in the.direction of the optimum. The new values of
u.generated)at every step of iteration result in an impfovement
in the value of the criterion functional. The process hopefully
converges to the optimum, |

in'order to take an iterative step in the prgpér direction
one must have a reliable estimate of the behavior of the system

in the neighbofhood of the assumed arbitrary control. Specifically,

we seek to obtain a functional relationship between variations in



B
the control vector u and the resulting variation in the criterion
functional., This yields a self—suffipient iterative procedure.

We will use this gradient method in some of its various forms
devéloped in the sequel along witﬁ the algorithms that allow ﬁs

‘to take advantage of the Hybrid Computational Technique.



1.3 Grad%ent Method

The basic equations used in the algorithms for the gradient
- method can be dérived as follows, Réferring to the set of
-equations (1.2.10) we have

oy (x, @ = F.(ym,u) , 121,444, (1.3.1)
dX 1 h R .

For using the gradient technique one has to consider a small
perturbation in the control variable u, With new control as
u+6u and resulting trajectories as y+6y, the resulting first order

variational equations are given by

d 4 3 fs £
5 Oy;) = T L syy+ I 2__,1_auk (1.3.2)
. 3= 35 k=1 aYy
In matrix form (1,3.2) can be restated as
S sy = asy + A yéu (1.3.2a)
dx u ' )

where A, denotes the partial differentiation of "A" matrix with

referenc§ to the subscripted variable u. With A defined as in

(1.2.103)
—y3 0 sr
"y”_ 0 - §c
A ysu = .
u
0 'sz
L 0 wyl | e _
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Now one can define a set of adjoint variables by the

differential equations

£s )
o) = = 2 A(x,0) . (1.3.3)
ax 1 Ssa3ys J. .
J i

The system equations (1.2.10) are linear in y+ Under such
circumstances the adjoint equations will always be reduced to a

form

E . %—}-{- A(x,m) = "At(u(X) ,N)A(X,M) . (l.anu)

Before illustrating the function of the adjoint variables,

we can discuss their form, From (;.2;10) and (1.3.4) one can

&

derive the relationship ' .
Lty = o ; (1.3.5)
dx ,

i.e, the inner product of A and y remains constant for all x.

This implies,

3toyy(o) = at(uyy(ny . (1.3.6)

A

In terms of fundamental matrices [15] ¢ (k) and w(x), where

y(x) ¢(xdy(0) (1.3.7)

A(x)

¥(x) A0) , (1.3.8)

the relationship (1.3.6) yields

¥(x) = ¢ 1(x) . (1.3.9)

Hence, if the solutions to (1,2.10) are known in terms of the
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fundamental matrix ¢, the sclutions for adjoint equations can be

obtained as

-1
Ax) = o7 (x)x(0)
" without solving (1.3.4),
Also for certain forms of matrix A there exists a simple

linear transformation of the type

v(x) = BA(x) (1.3.10)
where B is a nonsingular constant matrix, such that, with this

transformation the adjoint equations

A -ata

ot

become

é—-— Y = =Ay .
dx :
With the change of variable as
z = L-x (1.3.11)

the equations reduce to

& v(z) = Az)v(z) . (1.3.12)
dz

This equation has avform identical to (1.2.10). Thus the trans-
formed adjoint variaﬁles Ytz) are solutions of fhe system equa-
tions with the reversal of the space variable, The "A" matrix as
defined $y1(1.2.10) possesses the above properties. We will

consider the corresponding B matrix and the significance of the
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property mentioned about later, when;w¢ will get to the stage
of obtaining the numerical solutions to the system and the
ad301nt equations, |

Multlplylng equatlon (1.3. l) by Al, (1.3, 3) by Gy , addlng

them together and performlng summatlon over i, ve get

d 3 f3 : ' :
-~ [21‘63’-] = z E }\. —-.-.J.'. (Su ° (103513)
dx "3t 7a ik tay, K
Def irle R
H o= £ = I Mf .
- 1

Then, integrating (1.3,13) ffom‘2=0 to x=L,
L L - . L
[ZA,y.37 = [ Héudx ., (1.3.14)
i h S 1o 0 u )

Let us consider a general case where mixed boundary condi-

tions have been satisfied., Divide y into two sets.

t . t t
= [ ]
y _yin’ yfz )
such that
t : )
. yin = [yl““’yk] ’
and
t L S ' .
Yoo = [pgpeeeeayyd o (1.8.15)

The mixed boundary conditions are
95000 =y ),

Yfz(x=L5m) = yfz(w) . (1.3.16)
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Then we can comsider a general criterion function as
¢ = f ‘F(yin(x=L,w), Ygq (%=0,0))dw (1.3.17)
Since yin(o,m) and yfz(L,w) have been specif;ed,
ayin(o,w) = 0
and
(Lyw) = 0

Yer

So far we have not defined the boundary conditions for the

adjoint system. Let us define

t

Ain = [)‘l’nouxk] $ ) R (103018)
A= I Al |
fz - k‘l‘l’..‘ n ® (113019)

In order to obtain the functional relationship between the
variation in criterion function and the control variable, define

the boundary conditions as

Aipebo) = FE (@) (1.3.20)
in
‘and
A (x=0,0) = P§f () (1,3.21)
- 2

where Fy (v) and F_ (w) are the partial differentials of F with
in yf 2
réspect to yin and Yeq o

Thus the left hand side of (1.3‘14) becomes
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[EA.8y:10 = [<h; 8y:> + <hg 6ye>I0
i i7idy in®Yin £ o0f7 g ¢
By using (1.3.15), (1;3.20) and (1.3.21), it reduces to

<F N éyin> + <F ,,Gyf£> = drF .,

in ‘ yfl
Hence (1.3.14%) reduces to
dF(w) = J Hu(x,w)éu(x)dx . (1.3.22)

Integraping (1.3.22) over "w" and using the rélationship

(1.3.17) we obtain

o L

@ = f é H Sudxdo (1.3.23)

‘
The above expression gives a functipna; relationship bgtween
the variation in édntrol and change in criterion function in
response to it. Noting that du is a functian of x one realizes
that an unlimited number of solutions for Su can'be obtained from
(1,3.23) for a specified value of d¢. Hence we stipulate an

arbitrary criterion function

O
"
N

; sutWéudx (1.3.24)

which has to be minimized while satisfying (1.3,23). The matrix
W(x) is a square weighting factor matrix. The choice of>W(x) is
.quite arbitrary except that it has to be positive for all x.
This is required in order to satisfy the strengthened lLegendre
condition for the minimum of O This



21
(i) eliminates the singular problem since the criterion
is quadratic in control, and
(ii) keeps the variation Su to a minimum (in a Euclidian
norm sense)., This is désirable éince the derivations aré based
on a small perturbétién. AR

We have to find du that minimizes the composite criterion

function

b= .;. f sutisudx + v[d- S° [ H Sudxdw]  (1.3.25)
where v is an’ undetermined Lagrange muitiplier, to be chosen so

as to satisfy (1.3.,23), Euler Lagrange equations give

.

bu o=v _[PW Hdw o ST (143426)

Substituting this result back in (1.3.23) we pbtaih the expression

for the Lagrange multiplier v,

o

veoae/ 17 07 PG GOH () dxdudy
-0 - 0 . :

We finally have the expression we were seeking for the optimal
U,

o

-1 .
su = [de/ 7 ;7 sF H (o) (K (x,y)dxdudy]
-~ -0 0 )
w =1
J W (x)Hu(x,w)dw . - (1.3,27)

‘The iteration algorithm is fairly straightforward and

proceeds as follows,
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[ R

(1) Assume a nominal control u, ' Solve system equations
(loénl) with boundary conditions (1.3.16).

(2) Solve the adjoint equations (1.3.3) with boundary
conditions (1.3.20) and (1.3.21) te obtain A.

(3) Evaluate su from (1.3.27) fer=a étipuleted value of
‘3d¢ and an assumed.value of 4W’1.» .

(4) Add Su to u and obtain revised estimate for eontroi as
utéu. The inequelity constraints on u are taken into account
by truncating (utsu) at LM or u_ wherever 1t crosses the bounds.
The validity of truncation can. be proven (refer Appendlx B).
Now branch back to the start of the 1oep for the next iteration
cycle. | . : -

The procedure is repeated tillléhevimproeeﬁent défcorrespond— '
ing to a '"reasonably" small Sﬁ drops dewn coﬁeiderabl§, By this
time the system hopefully converges te at least a local optimum,
The weighting matrix W(x) is found to be a critical ‘factor in
influencing the con&ergence. We postpone fﬁe diecussien of
convergence till we face that problem in the next chapter.

To obtain a better understanding of the nature of.the varia-

tion Su, let us define

33% is chosen so as to obtain convergence of ¢ to an optlmum
value.

YThe choice of W~! is based on the knowledge of the system.
The unity matrix could be chosen as a first estimate of w-l
Section 2.4 deals extensively with the choice of w1,
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6uS(X) = fm w_l_(X)Hu(ng)d(ﬂ . (l|3 328)

- OO 7

Hence (1.,3,26) can be rewritten as
su(x) = vGuS(x) . (1.3.29)

There are two aspécts of the form of &u which we can influence:
l. The shape of the variation 6us(x), as influenced by
the arbitrary shaping matrix w-l(x); and
-2+ The amount of variation, or the step size v, which is
constant for all x, The arbitrariness in the choice of d¢
influences Q:
Let us considgr an analogy from the field of ordinary cal-
culus, Let the criterion function 4» which has to be minimized ~~——— "7~
be a function of toniﬁdependent variables kl and %,
¢ = Q(xl,xQ) . (1.3.30)

Hence the first order variational equation is

de = éx éxl + Qx §x (1.3.31)

1 2

2

X
1 2

to x; and Xy respectively.,

where ¢  and ¢x are partial differentials of ¢ with respect

For a given d¢ we can find non-unique values of §x; and
&,. An additional constraint that removes the non-uniqueness

is obtained when we seek a variation (6x1,5x2) that



(i) minimizes :

-

‘ ‘2 .
%.ll & |7 = %.(6x§ + dxg) (1.3,32)

and (ii) satisfies .(1.3.30).
The composite criterion function for this acéessory minimiza-

tion problem can be written down (refer (1.3.25)),

y =2 (532 + 835) + ulap - (4, 82y%0 6x)]
1 2

The conditions for stationarity of ¢ yield

le $

1)
=

6x2 ¢

2 (1.3;33)

Substituting this back into §1.3.31) we get
: 2
p = d¢/|Grady|

In (1.,3.33) the gfadient ¢x gives the direction in (xl,x2)
1
9
X
2

space and y is the step size.

Referring back to the problem of the calculﬁs'of variations
if we let W"l equal identity ﬁatrix, Gus in (1.3,29) is the
"gradient" of ¢ at any x., We can call this function a "shape"
of the variation that specifies the "direction" in y space .at all

X, The constant v in (1,3.29) is comparable to the step size v

@
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in the above example, Thus, the separation of the variation in
control &u as a "shape factor" éus-and a step size v is comparable
to the “"gradient" and a step size.

So far we hava_considered a-genéral case and héve t?ied to
bring out certain péinfs and desgrigé ;er%ain ﬁroperties fhat
will be made use of when we try to handle particular cases in the
following chapters., The numerical analysis will bg done with the
help of a Hybrid Computer unit, The problem.will be discretizéd
in frequéncy. ‘ -

As a first staéé we will consider the sysﬁém.Operafion at
only one ffequency. This is the syﬁthésis_df a feedﬁack cirpuit
for the oscillator. Then we ﬁiil cons{der thevdesigp_pf a
notched filter where one has t§'§ﬁa§e the‘frequency fesponse of'

the filter.



CHAPTER 2
2.1 Phase-Shift Oscillator Feedback Network

The design of a feedback network for a phase shift oscilla-
 tor has been a topic of a number of studies. As shown in a very
basic block diagram (Fig. 2.1), the frequency sensitive feedback

.circuit has to provide a proper

) '\ .

: >1 AMPLIFIER > >
L INPUT [’/’,,z,—f ouUTPUT

FEEDBACK CIRCUIT =

e ]

e _FIGURE 2.1 _ e

A BLOCK DIAGRAM FOR THE PHASE SHITT OSCILLATOR

gain and phase shift relationship so that the system may oscillate,
Assuming that the amplifier has a phaseAshift of 180 degregs, the
feedback circuit has to provide an additional 180 dégree phase
shift in order to get the conditions for oscillation., One ther
usual requirement of the feedback circuit is that the attenuation
during the transmission of the éignal should b; minimum, since

the total gain around the loop should be unity. This lowers the
gain requirements of the amplifier, | o
A three section lumped parameter -- series r, shunt ¢ --

network, where all the sections have finite nonzero resistance

and capacitance values, gives [16] an attenuation of 29 for 180

26
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.degree phase shift., When each section of such n section network
is completely isolated, i.e. it does not load fﬁe previéus
section, the gain corresponding to 180 degree ‘phase shift is

given [17] by

gain = sech

=R E]

'
]
i
i
i
!
|
i
1
'
1
1
!
1

| )
The table 1l shows the values of attgpuation fo: circuits with n

equal to one to eight. Johnson [lsj has shown that the circuit

1
t
1

in Fig. 2.2 gives, in the limit, an attenuation of 8 as K tends

H
]
|

] i
|

| ;
! A i : 1 °
c ¢/k /x> _
et - = = 2 ——
INPUT R % KR KR OUTPUT
FIGURE 2.2

A THREE SECTION FEEDBACK CIRC?IT USED BY JOHNSON [18]1
to infinity. He also showed that a{unifo%miy distributed series
r, parallel c network would produce?an attenuation of 11.6.
Increasing the number of sections ié the iumped parameter circuit
helps to reduce the attenuation. Aflimiting case is obviously a
distributed rc transmission line, it ver§ high frequencies the
distributed series inductance begin; télcomg into picture. Edson
[li]'states that, "unfortunately, tﬁc analysis'bf multiple~
section lumped networks is exceedingly complicafed and tedious...:",

It is found that useful inferences may be drawn from the limiting

case in which the number of sections becomes infinite and the
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t
TABLE .1

THE ATTENUATION OF SERIES r SHUNT ¢, n SECTION
NETWORK WITH 180 DEGREE PHASE SHIT.
ALL THE SECTIONS ARE IDENTICAL
AND ISOLATED.

No. of Sections n Attenuation Sec,® 7
' oy
1 [+24]
2 -22]
3 8
4 4
5 - 2.9
B 2,37
7 2,108
8 1l.884

28
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network becomes a smoothly tapered transmission line"., (Fig. 1.1)

He assumed an exponential variation of the parameters correspond-

ing to
- 2
r(x) = Re ‘kx ’ ; \
e(x) = Ce;Qkx .
x) = 0 .

Edson obtained curves for»attenuation at 180 Aegree phase shift
as a function of parameters R,C,'féper k, and line length L. It
éan be easily shown ‘that as k approaches infinity'the étfénuation
~apprcaciies unity, ' . ‘ |

The approach we will use'iﬁ the sequgi is fo keep the forﬁ
of the distributions cdmpletely“ffé;Aexcep£‘qu’the ﬁébér and
‘lower bounds on r and ¢ resﬁlting fpdm the bhyéi;al bonstréints
of realizability and try to obtain the distributions of»para—

meters r(x) and c¢(x) which optimize the specified ériterion,

viz. minimum attenuation at 180 degree phase shift,
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2.2 Mathematical Formulation of the Oscillator Problem

The general statement of the'pfoﬁlem is as follows:
-For a distributed -- senies'r and &, shunt ¢ -- feedback-circ&it:
find the distribu?ions r(x) and c(x).[wigh rgference to Fig, 1.1]
such that at a given frequencj,

(i) There exists a desired phasé shift between the input
and output, and |

| (ii) the attenuation is minimum,

The distributed inductance 2(x) is assﬁmed to be a non~controll-

able quantity.

The system equations gévgﬁﬁing th?.reiéﬁi6nghi§ between fhe
voltage and current iniFig. l.l“afe-partial_differential equa;
~tions in time and spaée as givéﬁ.in (1.2.2) and (1.2.3). The

driving function vin(O,t) is a cosinusoidal inp@t at frequency

"' We can assume a steady state solution of the form

vi{x,t) = a(xi cos (pt+8) Vl(x5 cos wt + V2(x5 sin wt

- (242.1)

i(x,t) Il(x) cos wt + 12(x) sin wt

(2.2.2)

s —1
where 6(x) = tan Vz(X) specifies the phase angle of the
; L V(%)
: = (VP lx) & VR(x)Y172 ;
_voltage as a function of x and a(x) = (Vl(x) + Vo(x)) is the

amplitude of the voltage along the line. Substituting the solu-

tions into (1,2.2) and (1.2.3) we get the set of equations



31
(1.2.4) for fixed w, -

At this stage we make two trivial assumptions.

(i) The output impedance of the amplifier [source impedance
at the input of the line] is zero, |

(ii) The input impedance of the amplifier'[load impedance
on the line] is infinite. | .

‘Without -any loss of generality the input conditions of the line

could be specified as

Vlgo) = a |, a>» 0 ,

Vy(0) = 0 . (2.2.3)
The open circuit at fﬁé‘é&tﬁhf”éhd 6f~the'line implies

I,(L) = 12(L) = 0 , (2.2.4)

t

The two conditions given above get slightly modified for a non-
zero amplifier output impedance and finite amplifier input
impedance.,

" The 180 degree phase shift requirement is translated as
V2(L) = 0
vy <0 .. "(2.2.5)

Equation (2,2,5) assures a phase shift of w, 31wy 5wy sees
Since the minimum attenuation is same as the makimum gain needed

to maximize ¢,

-
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(L)
(0)

R

¢ = (2,2.6)

R

'with alx) as defined in (2.2.1)., Since V,(0) = V,(L) = 0 and

"Vl(O) = a, the criterion becomes

max ¢ = max |[V,(L) . (2.2.7)

The general forms of the solution will be as shown in Fig, 2.3,

al . d - V‘(x)
| € "V:.(".>

"FIGURE 2.3

-~~A-GENERAL FORM OF THE IN-PHASE AND QUT-OF-PHASE COMPONENTS
OF THE VOLTAGE WAVE ALONG THE TRANSMISSION LINE
The attenuation increases as the signal travels along the line,
~.Thus there is no possibility of the attenuation at a phase -shift -
of 37y, 57y «ss being smaller than that at + We can safely restrict
our considerations to the phase shift of w, or the first_zero of
Vo(x). N L
The boundary conditions (2.2.3) and (2.2.4) require solving
a two point boundary value problem, since the voltage is specified

at one end and the current at the other end. It is possible to

avoid mixed boundary conditions by specifying the voltage at x=L..
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If the conditions are specified as Vl(L)=a,

' Q
X

- X=0 < Z x=L
z=1 e 2=0
d
y 4__ V.
e - VQ_

FIGURE 2.4
THE IN-PHASE AND OUT-OF-PHASE COMPONENTS OF THE VOLTAGE
WAVE FOR 180 DEGREE PHASE SHIFT

V2(L)=O, from (2,2.6) it is apparent that with

Vy(0) = L) =Ly = 0,
max ¢ = min [Vl(O)[‘ .

Fig. 2.4 shows a general form of the solution. For a > 0,
v,(0) <o, This implies that

max'¢ = max Vl(O) (2.2.8)

Now we can define the problem using control system terminology.

Define the four-vector

Yt = [V19V2b11s12] A

The system equations are given.by

-‘l—y(x)' = Alu(x))y(x) (2.2.9)
dx -
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The matrix A(u(x)) is defined by‘(l,Q.lOa) and u(x) is a two-
vector defined by

ut(x) = [r(x),c(x)] . '(2.2.10)

The inductance #(x) is assumed to be a non-controllable parameter,

The endpoint'boundary conditions are
- yHx=L) = [2,0,0,0] (2.2,11)
‘with L fixed; and the rigid constraint Q is given by
n[§(x=05] = y,(0) = 0 . ' (;.2.12)

Our task is to obtain r and ¢ distributions that maximize

¢, where
¢ = y,(0) (2.2,13)

We also assume that the limitations in fabrication require
that the values of resistance and capacitance per unit length
be within finite upper and lower bounds, This gives rise to

the inequality constraints on the control variables r and c,

r, S r(x)

A
e ]

M

e, < c(x)

1A
0
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2.3 Metﬁbds of Solutiocn

A, Héﬁilton-Jécobi Eqﬁations via Dynamic Programming:

Dynamic Programming is presénted here to give some idea
about the coﬁplexify involved in the dumerical.solutions of.fhe
two point boundary vaiue problem one may fgge in using Fechniques
that lead.to a set of necessary conditions for optimality.

Let us define a new independent variable

z = .L’X . o . (20301)

The state equation which was the same as (2,12) now becomes

Ly = - MGG (2.3.2)

_and the end point conditions specified in (2.11) now become

initial conditions
y(z=0) = y, = y° . (2.3.3)

With the criterion function as\¢ = ¢(y(2=L)) we have a
Hayer fqrmulation of the variational problem. Bellman and
Dreyfus [19] havé used a heuristic approach that is very reveal-
jng. The optimal payoff function as designated by J, is an
implicit function of the initial state y° ='y(zo) and the length

of the process

s = L - Z @ (203.4)
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The optimal payoff J is defined by

I o= 3yos) = T eyl . (2.3.5)

The optimal vector u® (z) and the‘optimalAstate vector y® (z) all
depend on y© and s. Consider a distance 2z along the optimal
trajectory as shown in Fig. 2.5,

VA

¥ )

OPTIMAL
T RAJECTORY

e 202
7{ Czyt )

Z-2 Z,+ 02 e Pt
| FIGURE 2.5 '

THE OPTIMAL AND NON-OPTIMAL TRAJECTORIES

The trajectory for nonoptimal u is also shown. Along the o?timum

path,
J(y0%s) = J(y*(zo+Az), s-Az) (2.3.6)

since we will end up at y* (L) along the optimum path, no matter
where we start from,

- If we take an arbitrary u from z_ to zO+Az and an opfimal

0
u=u® from zyt4z to L then the payoff function will be

J(y(zo+Az),s-Az).
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Thus, - *

J(y%s) = mix [J(y(zofAz),s-Az] . (2.3.7)

Expanding the right side in a Taylor series and neglecting -

second and higher order terms, ,

!

J(yo,s)

= MR r3(yo,s) - 2d Az + I iﬂ,_Ayi]
u . a8 13Ys
‘ _ °J3
= MaX [J(y°,s) -MAz-i-za__Lii._y. : Az]
u ’ ds idy, dz * (y°,z ) ’
C A 0
(2.3.8)
since "
AY. = i" y-AZ . . . -A e (203;9)
¥ dz ~ 3. o o : R
The term on the right side which depends on u is-g—-yi(zo).
. T o dz

‘Hence we take all the other terms outside of fhe bracket and

divide by Az. Taking the limit as 42z>0 we obtaih

aJd . max $3_ 4 o ] (2.3.10)
ds ?(Zo) [ 3 3yj dz y] (yo,zo) :

In (2.3.6) the maximization was to be carried out over the inter-

val,zé to zo+Az, With Az»0 the control vector becomes just

n(zo).

The partial differential equation (2.3.10) is true for any

z along the trajectory and the corresponding duration s. Thus,

" 3d max 3J '
ad £33 _a o , 3.

This is a Hamilton-Jacobi equation,
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For our case y is a 4-vector and u is a 2-vector,
ut = [r(z),c(z)]. We can incorporate the constraint (5.2.12)
iﬁto the criterion function by means of a Lagrange mﬁltiplier :

p and write a new payoff function,
¢ = yl(z=L) + p y2(z=L) . (2.3.12)

In order to solve (2.3.7) numericaliy, we have to discretize
it in z. As a first step we have to obtain solution of u(zo)
and then for u(£0+Az), assuming u(zo) to be constant.from z0 to
zo+Az, and so on. This becomes a problem of grid formatibn {20]
in five dimensional space [yl,yQ,ys,yu,s]. The undetermined
Lagrange multiplier y is an unknown quantity that has tobe
determined By trial and error. -

No attempt was made to cbtain the nuﬁérical solutions using

this approach, since the curse of dimensionality is indefeatable.

B. Pontryagin's Meximum Principle:

The Maximum Principle will yield a set of necessary conditions
that the optimal control u® has to satisfy if such control exisis,
and if it optimizes the criterion function.

Given. the system equations (restatement of (2.3.2) and

(2.3.3)),

. . :
-a-z—y(Z) = ACu(z))y(z) (2’3_’13)

with boundary conditions

y(z=0) = y° = [a,0,0,0] , (2.3.,14)
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the Maximum Principle states fhat in’ order that the trajectory
y(z) be optimal in the sense that the criterion function is
maximized it is necessary that one can find functions A(z),
defined és the adjoint variables, satisfying the following
prope?ties,

(i) the Aj satisfy the differential equations,

L S
d d % 3 =
= A5 +i§l [353- £,(y%(z),u (z))]xi(z) 0 (2.3.15)

(ii) lettipg
- Ll_
E(u) = 1 £ (y(2),u)xr.(2)
. i 1
i=l1
where u is arbitrary, nonoptimal 2-vector, then

E(u*(z)) > E(u(z)) for all z and admissible u.

(2.3.16)
At this stage we may introduce the Hamilfonian,'
. b
H(y,u, ) = ¢ A f.(y,u) (2.3.17)
5oy 33

Thus, in terms of the Hamiltonian the Maximum Principle states

that, given

d_ - t
’ dz y = HA
and 4.2 = =HY | then (2.3.18)
dz y '

in order that y (z) maximizes the criterion function it is

necessary that
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H(y(z)ou(z), M2)) > H(y(z) i, \(z)) (2.3.19)

where U is any constant admissible control vector. Also the
adjoint variables have to satisfy the transversality condition

at z=L

a(L) = 24 - 38 (2.3.20)

J . Y . i
ay; | aYj

where ¢ is the criterion function, @ is the boundary constraint

and p is the undetermined Lagrange Multiplier.

Coming back to our system of equations,

g;-y = - Ay . .
%;41 = :Atx o

H = = AiAy

y*(0) = [a,0,0,0]

ABL) = [1,-1,0,01 . (2.3.21)

With the inequality constraint (2.2.1%) on the control,

(2.3.19) gets transformed into

ig;— > 0 if u® = u,

3us i imax

l¢

aH = 0 . >yt >

3. imax i imin

u¥, _

H . ’

2 < 0 ifué, = u . |, (2.3.22) -
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and the constraining equation
oly(L)l = o . -+ (2.3,23)

Equations (2.3.21) to (2.3.25) comprise a self-sufficient
ol R
. - !
set of equations, which, when solved will yield the optimal
control u*(z). This is a two point boundary value problem.

Since A(u(z)) is linear in u, H turns out to be linear in

u, ' -

H
r

()\,?3 t .)\237“) »

"

B oWy, - Ay e (2.3.24)

Thus (2.3.19) sp_ggests a iaéng baﬁé contrbl. In-' other words,
we are tempted to beliéQe that u;'will alﬁa&s bg at githar -
boundary and will switch whenever H, changes sign..’

Assuming such a bang bang form of the contrél, a combination
of iterations and scanning (for u) was usea to find a solution.
The iterations did not converge. The solutions obtained by the
'gradienf technique which is described later,'indicate that the
a;sumbtion regarding the form of the control was erroneous. It
does not turn cut to be bang bang control. One way of cirgumvent—
ving this is by adding to the criteri;n‘function a penalizing
functional [4] that is noﬂlinear in control, |

As Johnson and Gibson [13] have pointea out, it is character-

istic of the solutions to linear optimization problems that the

switching function H, sometimes become identically zero over
i - .
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~some finite interval of 'z'., Since,' during this interval, H
does not depend upon u explicitly, the usual procedure of
selecting u® so as to maximize H breaks dovn. These linear

{0

optimization problems where H, becomes identically zero over

finite interval have been refeired to as "singilar”, It has

" been shown that the optimal control may actually cénsisg of

intervals of variable control effort (called ﬁsipgular switch-

-ing curves") combined with intervais of limiting control,
Thus, there seems to be a distinct poééibility of the

optimal control beiﬂg a iimiting,control with siﬁguiar curves

rather than a bang bang control with switching pointé.

C. Gradient Technique [141:' First ¢fder
" The approaches deécribed s&dfar are based'on obtaining a
set of necessary éonditions for optimality ana then tryiﬁg to
~get solutions to this set of equations.— Thé alternate apérbach,
as already mentioned in the previous chapter, is the "Gradient
Technique". Consider a small perturbation §u(x) in the control

variable with reference to the set of equations (1.2,10),

g.‘n‘

y; = £;0xdulx)) .

The resulting first order variational equation is given by

3, .
L (8y;) = I—~2éy. +1I 71 s (2.3,25)

A . x °



f .
¥ 43
Define a set of adjoint variables by:the differential equations,
afs .
-d--' (,)\i) = - ).: -—l 6)\‘ e (203026)
dax J 3y, J .
l .
¢ ! :
Multiplying (2.3.25) by Ai, (2.3.26) by Gyi, adding -them together

and performing summation over index i,

>
@
|
[
o
[
-

d 11 s = ' .
& .6y.] = LI (2.3.27)
dx 3 * 2 ik auk k '
Define
H = >< A’f > - E )\-f. '
. 171
i
» f.
H = I et
k i oy
Then, integrating (2.3.27) from x=0 to x=L,
[z A,6y.1" = /U H suax . (2.3.28) )
n 177179 0 u

Since y(L) is completely specified by (2.2.11)

Here we can define A® and A% as the adjoint system variables

satisfying (2.3.26) subject to boundary conditions

2oy = -3¢ (2.3.29)
i aly;(0)]

and aWo) = - ___ 3¢ (2.3.30)
i B{yi(O)]

respectively. When ¢ is given by (2.2.13), equation (2.3,29)

becomes
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$0) = o1t
Az%(0) = [-1,0,0,0]
Similarly, when @ is given by (2.2.12), equation (2.3.30) becomes
A .
A0) = [0,-1,0,01% .

Now we can define

u¢

< )\¢,f >

and

HR

<A%,f >

Substituting (2.3.29) into (2.3.28}, we obtain’

a9 =  H%udx (2.3.31)
. u -
Similarly, substituting (2.3.30) into (2.3.28) we obtain;
o = f Hiﬁudx (2.3.32)

Equations (2.3.31) and (2.3.32) give tge functilonal relationship
between variation in centrol, and change in criterion functional
and constraint in response to if.

The initial arbitrary non-optimal choice.of u or the subse-
quent estimates of u during iteration process maj not exactly
satisfy the constraint Q=0. Therefore, at eQeﬁy stage there
are two variations required.

(i) Change d¢ in order to-improve the criterion function.



(ii) Change d@ = -0 in order to satisfy the constraining
equation, thus making Q+dQ = 0..
An accessory minimization problem is formed by stipulating

an arbitrary criterion functional -«
¢ = %-'f Gut(x)W(x)Gu(x)ax' '

which has to be minimized while satisfying (2.3.31) and (5.3.32).
[See equation (1.3.24) and the following paragraph.] In order

and the constraint Q while minimizing the above criterion func-

tion, we form a composite criterion functional for the accessory
. ° c . - . . .

~ minimization problem. We seek & Su that minimizes the composite

criterion functional P

Y = %. f&utWSudx+v¢[d¢-f‘Hﬁéudx] + vOLda~r sudxl, (2.3.33)

¢

where v' and VQ are undetermined Lagrange multipliers to be
chosen so as to satisfy (2.3.31) and (2.3.32).

Euler Lagrange equations give

" . —1 - )
Defining
- -1
ub =W e (2.3.35)
-1
su? = wWoHRt (2.3.36)
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with -
| G ~(Ay¥gtagyy)
u
{

therefore su = vPsud + vRsuf (2.3.37)

. P : -
Substituing for Su in (2.3.31) and (2.3,32) we get finally

dé ve s Hi6ﬁ¢dx_+ ve s HﬁauQAQ "(2.3.38)

a

vt s Hlsubax + o7 s Hlsufax (2.3.39)

The iteration algorithm thai-is énggesféd ﬁy_the above equations
is fairly straightforward and.ﬁfocee&s_és foliowé.

1) Assume a'hominal contrblﬁu; Sol?é'the system equa~
tions (2.2.9) with boundary'coﬁditioﬁs (2.2.li);

2) Solve the adjoint equations (2.3.26): (i) with_bpundary
condition (2.3.29) to obtain A%(x) and (ii) with boundary condi—
tion (2.3.305 to obtain‘XQ(x).

3) Evaluate sud and §uf? from (2,3.35) and,2.3.36), with

. | 5

W given,
4) Solve (2.3.38) and (2.3.39)% for v¢ and v, -

5) Evaluate §u from (2.3.37). -

>y “!is chosen based on knowledge of the system, and could
_be made equal to the unity matrix.

-~

6d¢ and dQ must be chosen beforehand. d¢ is chosen for
convergence and dQ to satisfy the constraint equation (2.2,12).
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6) Add Su to u and obtain a revised estimate for fhe
control as utSu. The inequality éonétraints on u are taken
into account by truncating (u+§u)v§t uy or u. wherever it
attempts to exceed the bounds."Theraliqity of trgncation in
connection with convergence can be proveﬁ for ;he ¢ and
corrections sé?arately (see Appendix B). A more detailed
discussion is included in Secfion 2.4,

7) Nowebranch<back to the start of the loop for the

next iteration cycle.

D. Gradient Technique: SgcondAdrder Imp50vemeht
For an open pegiog-for u;4the convergence of fﬁe f%rst orderv
_gradient technique in the neighﬁorhéod of the éptimai.solution
has always been poor. The reason for poor convépgénég ié’fhat'
as a necessary condition for the optimality the ipfluence func-
tion Hu tends to zero near the optimal trajectory, Secéndiorder
terms take a domiﬂatiﬁg role in this ngighborhoéd. -Bﬁllock EQlj
has developed a method that takes into account the second'ofder
variations. Bullock considers-£he secopd order terms in the
variational equation relating a variation in the control to the
Variation in the criterion functional and then solves the two
point boundary value probiem.generated as a éolution to the
.acéessory optimization problem. . -

It is felt by this investigator that there is enough infor-

mation available in the solutions to the state and adjoint

s
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equations that can be made uée of in Fbtaining seccnd order
estimates of 6;. —

The first part of the_deveiopmenf handles a general case

where the form for £(y,u) in thé system equations

g;:_ = 'f(y’g) - (2.3.40)

is not specified.. In part (ii) a specific form of f is
assumed so that the results can be directly applicable to the
system representing a transmission line.

() Gengral Case

The system equations are given by (2.3.40) with the boundary

conditions

y(x=L) = y. . ' . '(2.3.40a)
The criterion function is

¢ = ¢(y(x=0)) . (2.3.40b)
and the constraint is

Q = Q(y(x=0)). = o-. . (2.3.40c)

In general, the boundary conditions may be specified partly at

x=0 and’partly at x=L. In such a case the criterion function ¢
and the constraint  also can be the functions of the terminal

values of y at both ends, x=0 and x=L. The particuléf case

described by (2.3.40) to (2.3.40c) is chosen because it is similar
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ﬁp the trasmission line problem we will be handling later.
However, the results can be extended, without any difficu;ty to
the case where the boundary conditions are mixed. In order to
derive a functional relationshgp 5;tween a variation in control
u and a corresponding variation in the criterion functional ¢ s

let us consider a small perturbation in the control vector u.

The variational equation may be obtained as,
4 (6y) = £0y + £ou + Loyts sy + 6yts su+ Loute s
an y y y u 5 y vy y y yu P au

+ f};(y,u,éy,éu) , (2.3.41)

«

where fh represents all the higher order terms in the expansion.

As before define a set of adjoinf variables such that,

4 2 = -ty (2.3.42)
ax y :

Multiplying (2.3.41) by At and (2.3.42) by (Syt) and adding

them we obtain

1 1.t .t

d .t Lt to ot ty t
Moyl = ATE Su + = ATSyYE_ Sy + ATSyTE_Su + = £
e L OYD = AT Su+ S ATSyTE By £ ATEyTE Su 4 2 ATeuTE du

+‘Atfh(y,u,6y,5u) .
The Hamiltonian is defined as

H = ats

also

-
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Now the equation is integrated from %=0 to %=L, to obtain
L _ L 1 ..t ' t l .t
Aayl" = P [H 6w + LoytH_ sy + SytH_ &u + = SuH  su
(Ateyl o'[“ 5 Sy Sy .vyu_ 2 au®®
( -y . -
+ Hp (y,u,8y,6u)ldx . (2.3.43)

'If we set the boundary conditions on A such that

t

(2.3,u4)
¥ x=0

Q =
o A(x=0) = -8

and neglect the terms higher than second order, the equation
(2.3.43) can be rewritten as

- (bo L. t.¢ 1
d¢ = é Huﬁudx + 6 Sy Hyuéudx +

— %(GytH ‘Sy + éutH du)dx .
2 0 Yy uu .

(2.3.45)
Simiiarly, if we define another set of béundéry_conditions

corresponding to comstraint Q,

.A?X:O) = gt (2.3.456)

Y wu=0 N
we have
L .
dq = Y e%uax + P syTH® suax + & 0T oyt sy
0 u 0 yu 2 9 yy

t,,Q . :
+ Su Huu5u)é_ix e (2.3.47)

The equations (2.3.45) and (2,3.47) are the second order estimates
of the variations in criterion function ¢ and constraint function
Q, resulting from a variation Su in the control variable, as a

functional of the nominal trajectory corresponding to a nominal w
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and the variations 8y. The nominal %rajectory will yield certain
value of ¢ and most probably a nénzero value of @ . One can pick
(i) a desired value of d¢ SO as to improve ¢, and
(ii) d92 = -2 , so as to make the new trajecfor§ fulfill
the constraining équation, Q=0,
and hope to find a set of fgﬁctions Su ﬁith the help of the
fggctional relationship given by (2.3.45) and (2.3.47). The
second order va?iational equation for 8y is givén by (2.3.41)

without the term f

h.
We have a problem of determining the best 8u, in some sense,

so that the trajectory Sy as governed by

a e T 1t ot 1. t. o
- (& = fF8y + £8u +=8y*Ff 8y + 8vy-f_Su + = 3§ 8
(éy) yo RS T OV Sy Oyt g St

g(8u,8y) (2.3.48)

with the boundary conditions Gy(sz) =0
satisfies the functional equations (2.3.45) and (2.3.47),

The problem, as has been referred to previously in part C
of Section 2.3, is an accessory optimization problem, The

criterion function for the acceséory prcblem is chosen as
0 = = 1 sut(x)W(x) su (x)d
s 5 ur(x)W(x) 8u (x)dx

For the accessory minimization problem, 8y is the state variable
and §u is the control variable. Equation (2.3.4g) is the system

equation and (2.,3.45) and (2.3.47) are the constraining equatiOns;
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Incorporating the system equations and the constraining equa-

tions into the criterion function {(as in Part C), we get the

modified criterion function ) ,

¢ %-f thWGudx + v¢[d¢ -/ (3& + Gytggu)ﬁudx

E—f (sy Hyy&y + Su Huuéu)dxq

+

Qrag - .0 1, ceot
velde { (Hﬁ + 8y gyu)éudx + > S (8y Hyyéf-

éutH;u§u?§x] +J th[ggg(éy) - g(ay,su)jéx

-+

. (2.3.49)
where v?, vﬂ, and §A(x§ are'fhe ﬁag?apgé multipligrs. The
choice of §A as the Lagrange mditipiie?é féﬁlfhé‘system equa-
tions is by no means an accidentgi choice. ‘As will be seen from
equation (2.3.51) which defines the differential‘equations for
8), the variable §\ is adjoint to the system Qariableé §y>in the
same sense as the adjoint variables A are adjoint to the systeﬁ .
variébleé y [see (1.3.1) and (1.3.3)]}. We will use the inﬁirecf
method of the calculus of variations to obtain the set of
necessary conditions far optimality. An iterative technique is
déveloped for solving these equations. The Euler Lagrange

equation for 6u is,

- 1 -
= (H-vPHd v . ot udend syt
su C=v@ud " -H) (80 DvP TS 8y)
QuQun® 5ot yan t
+ v (Hu+Hyu0y) + (glu6A+0yHAuy6k) 1l . (2,3.59)
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The Euler Lagrange equations for system variables y yield the
adjoint system equation

d t t t

S~ 82 = - (£ 4+ £- 8u +If" 8y)sa

dx y yao vy ¥

- v‘b(H&‘léu. + H 8y) - V(i gu + I»Pyyéy? W« (2.3.51)

" The transversality conditions yield tﬁe bodndafy conditions
| SA(x=0) = 0 .

The complete set of equations requiréd_to be édi;éd for
obtaining du, is now given by (2.3.48); (2.,3.51), and (2.3;50)
with (2.3.45) and (2.3.47). These ar"e éoupled-ds.ffereﬁtial
equations with mixed boundary_éonditib?é._‘fhé éi{uétiohAappears
to be hopelessly complicated. ) .

However, it is oﬁserved thé% the y and A-tfajectories for
u and utfu are related to §y and 86X .in a simﬁle_hannér. This
relationship can be mades use of in deveioping an iterativ;
fechnique to obtain the approximate solutions to t£e set of

necessary conditions for the accessory minimization problem.

Let us consider tﬁg a¢ system as defined by (2.3.26)
d ¢ = £ty
' y

The variation in this system due to Su is given by



d ¢ t s PO - é
=— (82X - (£ £- 8u + £ 8y)6A
= (8A7) ( y T i vy y)

£t sy - £F suad
oy

= - (£f ¢+ £ su + £F sy)ead
s y Tyt T Ay 098

1

b sy 4 1O sv). 3.
(gyusu + 1Y 8y) .(2 3.52)

The variation 6)% is not yet'felated to 68X, Thusréy is not an
implicit function of 6A%. The other coefficients of 6k¢‘in
(2.3.52) are fuﬂctions of the trajectories-f and A corfes?bnd—
ing to a nom{hal,coﬁ;rol u. Nowuyg if the'estimate'of §u is known
(2.3.52) becomes a linear non-homogeneous differential equation

. for §x¢. The factor (ngéu + Hiyéy) is a forcing function in

(2.3.52). Since'l¢ is completely specified at x=0, the boundary
conditions are

63%(x=0) = 0

Similarly, we may obtain

a P S - t Q Q 0

d_(sA = - (£ + £° 8u + £° 6y)6AY - +

o (82%) ( y yudt vy yISA (Hyuéu Hyyﬁy)
and

A% (x=0) = o . (2.3.53)

Equations (2.3.51), (2.3,52), and (2.3.53) are the same differen-
tial equations with identical boundary conditions differing only

in the forcing functions. It may be noted that the solutions to

.o
o
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a set of linear differential equations with zero boundary
conditions are linearly dependent upon the forecing functions.

‘Making use of this property we can write
. .

v

sx = vPaad 4 VBt (2.3.54)

where 6A% and )% are variations in A? and AQ due to u change
in control variable. As has been stated before, we hope to
extract the information already available without having to
simulate and sol&e any systems other than those required for
the first ordér estimate of Su. The variables &1¢ aﬁd 5% are
the variations in 2® and A systems corresponding to a variation

Su. The solutions to Aé and AQ systems with u+du as the control

will yield these variations. The variation §A can‘be eétimated
with the help of (2,3.52). Thus we have eliminated the necessity
for solving the set of equations (2.3.51) in a direct way. This
property is of paramount importance in the Hybrid Computations.
 As will be shown iﬁ Section 2.4 the systems y, A¢, and A\? can
each be represented by the same analog computer patching with

. the help of the proper transformations and change of variable.
Any additional system repfesentation cause; considerable coméli—
cations. With (2.3.54) as a new estimate of 8A, (2;3.50) can be
rewritten as -

= W - voeu? $) - vy Q-1
u = [W ~ vVO(HD, + Hy  82%) = vo(H  + H,  8)7)]

ot + ud NS ¢
by (Hu'+ HEY + H 60+ ayi  6x®)

* vQ(Hg + ngsy + Hlu519 + Gnyuyﬁkﬂ)] « (2,3,55)
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The problem cannot be simplified any further with f(y,u) as a
general vectop funcfion, Lét us restrict ocurselves to a more
specific case which covers the transﬁission line problem.,
(ii) Second Order SystemeQpétions
Let us restrict tﬁe form of f(y;u) so that the system

equations are of second order in y and u, i.e.

~ 3
af > = 3 =
ayiayjauk~ aufufyk o o

where i,-j, and‘k take integral vaiues; Thﬁs'the terms of the
order higher‘than tﬁé iﬁ the'variational'equatiéné develéped so
far will vanish identically., The second order Qariational equa-
tions become an exact descripfibn of tﬂe'secénd ordér.system
réther tﬁan being the approximafé oges.

Now we can outline an iteration procedure fo oﬁtain

suécessive approximations for du as a solution of the adcéssory
= .. minimization problem._ Assuming the knowledge of Su, say from
the first order estimation, the variational functions 6y,_6k¢

and 8x¢ can be obtained as

6y =_yl(u+6u) - yl (u) ‘Sb (2.3g56)
¢ - 3¢ _ ' ‘

SA A l(u'*“&‘-_l) ) }\”(u) s (2.3‘.,573_

s =

Q Q
A l(u+5u) - A l(u) . (2.3.58)

<™
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In order to get the new estimate of §u we can use the relation-

ships
d = /u Sudx (2.3.59)
(ytdy,utéu) '
= [ R sudx + S SutHE | . Sudx (2.3.60)
(y+8y,u) ‘ - (ytéysu)
Similarly,
a = [ sudx + Southl | Sudx  (2.3.61)
- ¥ (y+Sy,u) (y+Sy,u)
and
, Q.0 ‘
du = [W - véud | - VY J
il OL Y U0 M S U SLTY
(vbsu? + visu®) (2.5.62)
where T
sut = (Hﬁl v, (2.3.63)
(y+6y,22+60%)
s = (f 0 g )t . (2.3.64)
(y+8y, A" 48A™)

The equations (2.3.60), (2.3.61), and (2.3.62) are the restate-~
ments of (2.3.45), (2.3.47), and (2.3.55) respectively. The
desired improvements dé and d9 are specified. Hence the substitu-
tion of (2.3.62) in (2.3.60) and (2.3.61) yield a pair of

¢

simultaneous equations for v' and v, The values of v¢~and v
obtained from these simultaneous equations are substituted in
(2.3.62) to obtain a new estimate of Su. With this Su one returns

to equations (2.3.56), (2.3.57), and (2.3.58) and repeats the
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cycle, This is a secondary iteratioh loop for obtaining a
second order estimate of Su at a given nominal du. AfterAv¢,

vﬂ, and Su "converge" to their correct values (see Part B of

»
Section 2.%) utdu is formed. This is a new estimate of u for
the new iteration cycle of the main iteration 1oop;

(iii) Phase-Shift Qscillator Equations

Now that we have all the tools for choosing Su, let us
épply the method to phase—shift oscillator, In the case of a
phase-shift oscillator»the situation is éimpler apd much more

manageable. "From equation (2.2.9)

I

2 2
3f  _  3f _ .
§y@yy ~ dupuy o .

Hence all the terms in Hyy and Huu vanish identically. Letting

sud = w‘l(H¢[ »x o, (2.3.66)
U (ytsy,ad+51%)
suft = -W‘l(HQI ) (2.3.67)

Ui yrsy,A%4608)

equation (2.3.62) assume the form,
su = vheub + vBu® | (2.3.68)

Here we will make an approximation and neglect the second ordev
terms. in equation (2.3.48), Therefore,

-

£ ) . 03
y y + fyu u (2.3.69)

n

sy

g1
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Let us define the Y4 syétem és

%; Syg = £8y, 4 fyd6u¢ . (2.3.70)
6Y¢(x:0) = 0 H ( 4

and the Yo system as

4 _ 0 . |
= v £8yo + £ 00 (2.3.7;)

Then noting that Gy(x=0)=0 and the systems (2.3.69), (2.3.70),

and (2.3,71) are linear, we can write,

Sy =MAv¢6y¢ + vy, (2.3.72)
where

8y, = Yl(u+5u¢)° yl(u) L (2.3,73)

vp = Yweu?™ Yl - (2.3.74)

- Substituting for 8y from (2.3.72) and for Su from (2,3.68) the

equation‘(2.3.60) takes a form
% 5110 Q l $c..0 ¢2 tTyd .04,
dp = v® S Huéu dx + v S Hu6u dx + v S §y¢Hyu6u-dx
LR tyd 5,9 tyd sud
+ v J 6y¢Hyu6u dx + [ GyQHyuéu dx]

_92 (Std’ Q
+ v S yQHyuéu dx . (2.3.75)

-
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Similarly, from (2.3.61)

- 2
= vb Qsud £ 15,8 ¢ TuR sud
dn v? J H 6u®dx + v¥ S Huéu dx + v?® f 6y¢H duPdx
{ [
+ vOveLS y¢H Sutdx + f yQHquu dx]
) .
Q tuf 5,0
+ v S 6yQHyu6u dx . (2.3.76)

.

If we know the nominal trajectories and first estimates of sud,
sufl, 6y¢, and dyg, the above two equations can be solved for

v? and V%, Equation (2.3.55) can be approximated by

6 = pot 4 pé $520 -
su HP™ + Hyuay + gxéi . (2.3.77)

Using the same arguments and approximations as those used for
deriving (2.3.73) and (2.3.74) we can derive a similar relation-

ship for the variation in.k¢ system. Thus,
A = v¢512 TIRCLLPY S (2.3.78)

where_l¢ is the variation in A® system due to the variation &u¢

¢

and Ag is the variation in A® system due to the variation éuf,
Substituting (2.3.72) and (2.3.78) in (2.3.77),

O - bt .  oryd ¢ |
Su HEE + v oy, ¢ H D) (2.3.79)

Qub sy ¢
+ v (Hyusyﬂ + H)\UGAQ) .
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Similarly, for the A9 system

A = v¢6k2 + v?&Ag (2.3.80)
and hence ¢
Q 0t L b b
su* = Hu + v (Hyuéy¢ + Hlu6§¢)
Q10 Q ) ’ '
+ v (Hyuﬁys2 + _}{Aué)‘ﬂ) . (2.3.81)

Q

The above two expressions give estimates of su? and su? in terms
of v?, 6y¢,'6l¢, vQ,*GyQ, §AQ, which in turn depend upon the
- previous estimate of §ué and Suf, Thﬁs,>we have here a recurrence

relationship. Starting with the initial guess of

1]

sub = mot L
u

suf? 'Hgt R

one can solve the variational equations for 8y and $8A, and
obtain the corresponding multiplier.v¢ and v from (2;3,75§ and
(2.3.76). The estimate of sud and su® may then be updated from
(2,3.79) and (2,3.81), After fhree or four iterations (2.3.68)
can be used to estimate Su that will effect the desired changes
d¢ and dQ.

Iﬁ the case of the problem atteméted on the Hybrid Compﬁter,
_reasonable convergence was obtained in three or four iterations.
It may pe noted that the term'convgréence has been used here only

with reference to du® and SuQ. The values of v¢ and vl settled
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down to what appeared to be their final values for the éecpndary
iteration loop.

Affer the secondary loop ﬁf completed the du obtained is °

: . .

added to u, The resultant control u+du is checked for bounds
and truncated at the boundaries‘if éecessgry.'iThe main iteva-
tion cycle then proceeas with this new utéu as a nominal control,
The second order gradient technique yielded a Su that gave the
predicted improvements dé and d9 as long as the control u
stayed in the o;en pegion. Once the ccntroi reache@ the bbunds
the estimations staffed to go qung. ’Thé causeé for sucﬁ a pheno-
menon are discussed in Part A éf the next section. The failuré
of the second order technique-iﬁdicated that fhe convergence
problems are not neceséérily aséSciatgd witﬁAthe col?apse of Hu;
Instead, they are associated Qith the bounded naturé of the |
control. The following section presents the impfoved First

order gradient technique that is devised to handle this diffi-

culty. This new technique yielded &ery satisfactory results.
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2.4 .Algorithms and Programs

The iterative solutions are oﬁtéined-on a Hybrid Computer
using the improved gradient technique. Appendix A describes )
the features and certain operations of. th’e Hyb:;*id system. The
analog computer is used exclusively'for-golving the differential
equations. The digital computer suppiiés the continuouély vary-
ing coefficients. The synchronous .operation of the analog and
digital computer units yields fhé solutioﬁs.to the‘digéerenfial
equations. ?pe solutions to the varioﬁs systémvequationg are
stored into the memory of thé ¢igital céﬁputer'and are subse~
quently operated upoﬁ to obtainithe deéired ?éfiétién in the
control variables. The entire qpération‘is under complete

program control of the digital'computer.

Analog Patching:

We need to solve three sets of systeﬁ equations on the

analog computer. The system proper is described by (from

(2.3.2)), .

g.z. yi(2) = rl2)yg(z) + wi(zlyy(z)

L yy(a) = p(ay(2) - wtladyg(x)

%E‘ y3(§) = c(z)wy2(z) ,

gz y,(2) = = clzluy,(2) . (2.4.1)
and

e

vy (z=0) = [a,0,0,0] . (2.4.2)
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As shown in Fig. 2.4, 'x' is a forward and 'z' is a back-
ward direction of integration. ;I’h_e independent variable for an

analog computer is time 't'., The analog computer always inte-
A [ -
grates forward in time 't'., By setting t=z the equations (2.4.1)

S

are integrated backwards in space. = =

The two adjoint systems have jdentical differential equa-

»

tions (from (2.3.26)),

.g.x_ A (x) = ; clx)ud,(x) o
%;-x2(x) = ‘c('x.)waa(x). ’

Ll = 260 - éz(f)AQ(g) .

gz.x4<g> = .r(x)}z(fﬁ.;‘éi(x)li(é)A';— T (2.1.3)

?ﬁith.the boundary'conditions specified by

Ax=0) = A%0) = [-1,0,0,01° '(2.4.4}.
the solutions of (2.4.3) yield X¢(x> and with

Mx=0) = ké(o) = [0,-1,0,03% (2.4.5)

the solutions of (2.4,3) yield A x).
Equations (2.%.1) and (2.k.3) have the same form, With the -

transformation
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Pl = Yl(z) = }_\u(x) 9
Py = ¥p(2) = A %)
. ! .
PS = Y3(Z) = )\2(X).,.
. . ‘ o
PL‘, = Y“(Z) = ll(X) s (2.406)

. and with the proper choice of space varying coefficients r(x),

é(x), and 2(x) and the initial conditions, the same set of

equatiéns yield SOlutions.for eifhér y(z), (x) or A(x)..
The "B" matrix refefréd.té in (3.31) £urns out to be

°

oo Oo
OO MO -

-~ 0O OO0 O
o o0

The analog computer_pafching is éivenAin Fig. 2.6,

The Hybrid Computer solution was attempted at first using
the First Order Gradient Technique. The previous expe?ieﬁce of
the other investigators in the field of optimizatién indicated
that the method would pose serious éonvergence problems, So was
the case. An algorithm suitable for ﬁybrid Computational tech-~
nique was developed, taking into consideration the second order
variations, As described in Part B of this section, the.method
failed to improve convergence. It is now understood that the
convergence is seriously affected by the trungatioﬁ preocedure
‘resulting from the upper and lower bounds on the control. Part

A in the following section describes the development and the

s
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procedural details of the Improved First Order Gradient Technique.

This technique successfully tackles the convergence problem and

- yields "unique" distributions for the optimal control.
( :

A, Algorithm for the Impgoved first Orde? Gradient Technique:
The flow chart in Fig. 2.7 describés the hybrid program for
the first order estimation of the correction by the imp;oved
ngadient‘technique. A more elaborate description is given below.
Block l: Preparatory Steps -~ The input/output changels
of the DC ere reset; the length of integration is specified; the
quantum of the x or z interval which results from discretiza-

tion of the space is calculated. (The functions r(x) and c(x)

are approximated by the staircase approximation.) The upper and
lower limits on the control variablesvare sﬁecified and the |
arbitrary initial profile of the control variables is assumed
and loaded into the memory.

Block 2: Solving the System Equations on Hybrid Unit --
The DC sets the initial conditions for the integrators of the
analog computer as given by (2.4.2). The initial values for the
integrators can be obtained either by (a) using the digital,
computer to set a pot or (b) using DAC output lines. The initial
values of the functions r(z) and c(z) are set up on the DAé.“
The static test may be carried out at this time to check the
initial conditions.,

The integration routine then follows. The analog computexr

.
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FIGURE 2.7

COMPUTING ALGORITHH.FOR IMPROVED HYBRID COMPUTING TECHNIQUE .
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soives the system differential equations. The equations speci-
fied‘by (2.4,1) are integrated backwards in space. During
integration the AC feceives ffﬁ@ the digital computer the values
of the variable coefficients on tﬁé DAC and transmits back the
. values of the system variables on the ADC. '

The solutions obtained by integratién are éonverted t§ ‘
digital form and are stored in the memory of the digital computer.’

. The values of the criterion fﬁnction and the residue for the

constraining equation are evaluated as,

- @ ’
¢ = yl(z=L)
Q = y2(z=L) .

‘The variation in the criterion function, d¢, is chosen so as to
drive y,(x=0) towards the value of y,(L) such that the attenua-
tion approaches unity and d@ is chosen so that @ constraint is

rigorously satisfied by the next set of distributioms, i.es
dt = - @ {or Q1+ d2 = 0)

Block 3: Solving the Adjoint-Equations on the Hyﬁrid Unit --
The operations aré identical to the previous block-exceét that
(a) the initial conditions are specified by (2.4.4) and (2.#.5)
for A% and A® respectively, and (b) the adjoint equations (2.4;3)
are integrated forward in space so that x=t. Hence the control

distributions are r(x) and c(x). The same analog progrém that

P
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is used for the system equations is used for the adjoint systems
with the ?ransformatiOn of variables as given by (2.4.6).

Block 4: Thé First Estimate‘of du -~ The equations (2.3.35?,
(2.3.36), (2.3.38), (2.3.39) arfd (5.3.37) yield the estimate of
su. (W is assumed to be an identity matrix.) ‘Adding Su to u one
gets an estimate of the new control as u+du, However, if u lieé
close to or is equal to the limiting values the new control u+du
may exceed the limits, Under.thesevcircumstancés ut+fu is con~
fined to'the limiting values vherever it exceeds the limits on
the cdntppl variables. This amounts to the truncation of éu so
that utéu lies within thé specifieé'limits (seé‘?ig.'2.9).

The estimated new control is monitored at this point to
check if it exceeds the bounds and truncéted.if necessary. In
the case of the unimproved gradient technique, the progrém
branches back from here to block 2 and starts the new iteration
loop.

-“g?{i:if'ES'éﬁgéfvedJ%hét~afteéche édﬁ%rol.ﬁafﬁéglés reach the
limiting values and start getting trunéatéd, the subsaquent
iterations improve ¢ but cause £ to diverge instead of converging
to zero. It does not pay (in terms of convérgen;e) to let @
diverge too much, It becomes necessary to set a limit for [Q]
and monitor it at every iteration.

Whenever Q diverges and exceeds the limit, only a Q correc-

tion is applied during the iteration by assuming Suz0 in equa-
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i

tion (2.3.37). Thus

during such iterations. This groéédure drives Q close to zero
without any regard to the value of ¢. When @] is'driven
sufficiently below the limiting value the imposed restriction
toud=0* can be removed and one can seek both ¢ and ﬁ corrections
simultaneously.

So far we have not said anything about what values the
elements of the weighting matrix W should have. The matrix W
has to be positive so as toAsatisfy,the strengthened Legendre
necessary condition for theAaccessﬁry probiem. Normally W ;s
chosen to be an identity matrix. In such a case Hu solely |
determines the shape of Su. Hu is also the "semnsitivity funec-
tion" or'the "influence function" for the improvement in the
performance function with respect to a change in u. For the
sake .of clacity in the argument .let us consider u to be a one-
dim;nsional vector, If we éef%ne q;pt(x) as the opti@él
&istribution of the control, then the variation needed to reach
‘the optimal distribution from u(x) in one step is (u___-u).’

opt

The ratio (u éu)/Hu, which may be called "coefficient factor"

opt
is a good indicator of the uniformity in the systeﬁ variation,
If the coefficient factor is a constant then one can equate this

constant to a step size v so that
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Su f vHu = uop_t - 1

and reach the optimum in one ste§.~ However, ndrmaily the coeffi-
cient factor varies over the r%nge,of %, implying thereby that-
the control u(x) may be éiready:ciose to the ogtimal profile in
the most sensitive'ﬁegions and fartger;awéy ingfhe iéast sensitive

regions. Hence it is impossible to reach the u in one step

opt
unless one makes a fortuitous choice of factor W“l. When u is

a 'two dimensional vector a matrix W(x) such as the one defined in

(2.4.7) can be used as a compensating factor. The matrix

;(r -r ) T
x+r, ° 0
W-l = ‘ i »
L e : A
0 T ey %’ & (2.4.7)
. L | -

has been found to be helpful in the present case; The éboice
of W ﬁas governed by the sensitivity.

However, once Su starts getting truncated at the boun-
daries, we face a different type of convergence problem. In
order to get a better uﬁderstanding we will first consider a
simpler analogy.

Let ¢ = ¢(xl,x2) be the cost function of scalars x. and Rpe

1

Figure 2.8 shows the contours of the level lines for constant
¢. in space (Xl’x2)' The variables Xy and X, are bounded. We have

to seek a minimum of ¢, Let x° = (x°

l,xg_) be an arbitrary
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stgrting point. In the gradient teclmique one- seeks to move in
the direction of the negative grédient ~-V¢ which is normal to
the level line ¢=k© at x©, The(steg size is estimated from the
desired improvement d¢. If %0 isiclose to.the boundary of Xy or
Xy the step in the'négéfive gradientgdireétion %ay éo past the
boundary as shown in Fig. 2.8. One has fb ftruncaté’ the step
at x' which is a point on the boundéry. It is apparent that
from this point on, the stép in the dipection of the negative
gradient will be'trunéated‘in the 22 direcﬁibn.' The truncated
step wili yield muchhless improvement than the Stipﬁlated a¢.
This seriously affecfs the convergence. o

It is obvious from the fiéﬁre:théf the best direction to

follow is

i.e. to keep moving along the boundary Xy = Xy

m
Block 5: Revised Estimate of Su -~ Let us consider the
situation shown in Fig. 2.9 where u is a scalar function., A
part of u lies on the boundary u and a part lies on uM.' Tﬁe
variations Su¢ and Suf are the compohents obtained as described
in Block 4. The variation &u is the first estimat;. However,
.after truncation it reduces to ésu'. .It is apﬁarent that a large

section of ¢u -- shown hatched -- was counted upon to make -

substantial contribution towards the variations dé and dQ, but



75

_ FIGURE 2.9

PLOTS OF u, Su®, éu® AND Su' AS FUNCTION OF x
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3

is now ineffective., The coﬁposition of 6u' in terms of suf
'apd su® cannot be estimated. Since sud affects da, and sul?
affects d¢, the corrections d¢ ahd d2 resulting fromléu' are
not only small but are at times far different from the stipu-
lated values,

This can be remedied, to a large extent, by_giVing'due
consideration to the effect of truncation in the revised
estimate of du. This is effected by using [su'| or (5u')2

as a weighting factor. Thus we have
bt = 1y25ud
su' = (su') su

sult =7 (sut) suf T (2 8) T T T

Wherever the first estimate du gets truncated, su' is
equal to zero (see Fig. 2.9). The new estimates sud' end Su!
will also be zero wherever the first estimate 6u ié~truncat¢d.
Thus, the second éstimate of the step sizes v? and\fzis
obtained by reshaping su¢ and su? so that the second estimate
of the variation éu is confined, as far as possible, to the
region where the possibility of the variation exists.

Revised values of v¢ and v¥may be obtained from (2.3.38)

and (2.3.39) and the new estimate of 8u is given bf
su = vosud! + vRsule

Effectively we use a W factor, so that
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— v ) ' -
“(ar‘)z[fflﬁjiﬁ_ %+ r ] 0
L m
w!lo=
2. L (cM-'cm)
0 . , (sc ) [CM —---I'"’—-X]
(2.4.9)

where §r' and §c' are truncated first estimates from Block Y.,
The last part of this operation is checking and truncating
utdu. Then the program goes back to Block 2 for the next

iteration cycle.

B. Second Order Gradient Technique

The Fig. 2.10 shows the flow aiagram for fhe second order
technique. To a large extent the first few steps for the
improved first order technique are repeated for the s2cond order
_gradient technique.

Block 1 through 3 are same as described in Part A of ﬁhisA
section, .

Block 4: The first estimate-of sud and suf is evaluated
in accordance with (2.3.79) and (2.3.81); The unknown-Lagrange
multipliers v® and v are assumed to be zero.

Block 5: The system variations 6y¢ and 8y, corresponding

to the variations in control su? and suf are obtained by defining
ut = u+su? and W = u+ s ,

With u® as a control variable the system equations are integrated
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backwards in space as in Block 2. The solutions y obtained
during the 0perations of Block 2-areAsubtracted from these

functions to obtain

1]
«
8
«
L]

6Y¢

Similarly

u
«
1
«
L2

8%

Block 6: The adjoint system variations axg, 6A2, 5xg, and
axg are obta%ped as follows. With u? as a control variable the
" adjoint equations for 2% are integratéd as in Block‘3. The
solutions A® obtained during the opggations of Block 3 are sub-
“tracted from these functioné to obtain
sx® = a8 - ¢ .

¢ ué u

Similarly the other adjoint variations are. obtained;

‘axg = 8] - a9
uf U,

¢ - b1 - %
§a5 = A luQ A lu .

Q _ .9 Q
Sxg = A [un - A [u .

The estimates of v® and v¥ are now updated with the help of
(2.3.75) and (2.3.76). The new values of v® and v, and the
system and adjoint variations stored in the memory of the

digital computer are used in (2,3.79) and (2.3.81) to obtain

the new estimates of su? and duﬂ.‘ A cycle of the secondary
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iteration loop is completed here. The program branches back to
Block 5 for the next cycle of the secondary iteration loop. It
was observed during the computer operations that within three to
four iterations a_fairly good éonvergence is obtained for v¢,
vn, 6u¢, and suf, - After a prespecified number’of éecondary
itera&ions the program exits from the sééondary iteration loop
and procedes to Block 7,

Block 7: An estimate of the Su, required for the desired
change‘d¢ and dﬂ, is obtained by using (2.3.68). This Su is
added tdvﬁ t0 obtain u+Su. This estimate of the coﬁtrol is

checked for the limits Uy and ug, and truncated wherever it tries

to cross the limits{ Thqs, a newvestimate for the improved
control is obtained. A cyclegof the main iteration loop is com-
pleted here. The program branches back to Block 2, for the next
iteration cycle of the main iteration loop.

%

During the Hybrid Computer execution of the program, it was
i .

observed that the desired variations d¢ and d?, and the varia-
tions obtained as a result of the change in control "5&", obtained
as the second order estimate, are in very good agreement until
the control feaches the bounds, Once the control reaches thé
boundary for any x, the estimates are erroneous énd the solutions
stop converging, Thus, the second order technique do2s not help
to solve the convergence problem. Once the control reaches the

bounds it becomes necessary to use the improved first order

gradient technique,
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2.5 Computer Solutions

The use of the Hybrid Computer ﬁés considered to be best
suited for this problem due to %he‘following reasons:

,(i) The Analog Computer can soive the differential equa-
tions without diécrétization_in 'x' space.

(ii) The Digital Computer with the help of D to“A-conVerter
can generate arbitrary shapes of distributions and feed them to'
the Analog Computer to obtain the representétion of a nonuniform
transmission }ine.

(iii) The storage facility and the computationai capability

3

of the Digital Computer can be utilized to evaluate the esti-

‘mates of Su.
Appendix A deséribes the Hybrid Computer operations; As a
particular case of tﬁe oscillator probleﬁ we chose the féllpw—
ing set of values for the numepical analysis.
The ratio of-rH/rm and cM/cm is chosen to be 10. The limit-

..

ing values are chosen to be

rM = ey = 8
r, = cm = .08

This choice is governed by the limitations of the dynamic range
of the system. The ADC, DAC, and analog units cannot handle
quantities larger than unity (10 volts), and for the values of

the order of .0010 there is a serious noise problem. However,
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a large spectrum of values can be hanaled by transforming the
independent variable (thus effectively changing the scale)

provided the dynamic range is not too large.

 An exponential line .such as @

r(x) = pe?kz . _1»'= 'rm = o.ba
e(x) = Ce~2kx | € = ¢y = 0.8
2(x) = 0 -

is considered_to be a good first estiméte of u, Edson'sw[il]
';vgraphs indicate that tﬁe lengfh éf tﬁe iiné required for 180
s e . o .

degree phase shift, with the abbve dié@fﬁbﬁti@n;fshould be 17.3
units and the correspohding attanﬁation isAs; The calculationé_
show that the phase shift for line length of 17.3 units is 175
degrees and the attenuation is 4.7. When the-exbonentiais are
generated on the Analog Computer and the system equations‘are
solved entirély on the analog unit,_the length required for 180"
dggreé phase shift is found to be 18.9 units and the correspond-
ing attenuation is 5.8.. The calculations show that the phase |
shift for line length of 18.9 units is 186 degrees and the
correspbnding attenuation is 6.2. The discrepencies could be
attributed to the following factors.

(i) The Edson's graph leaves some room for ambiguity in

region of interest.

(ii)  The analog multipliers are a bit noisy.
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The quantum of the interval is chosen to be 1/10 unit,
Thus, we have 189 discrete intervals for length of 18.9 units.
The functions r(x) and weclx) ar? represented by stepwise approxi-
mation. At the start of each interval the value of r(x) or wc(xi
at that poiht is provided on DAC and held constant ﬁntil the
start pf the next interval, The system vériables are sampled on
the ADC at the end of each interval. The‘sampled valueé are fed
to the DC through ADC while the intégration continues'uninter—
rupted.

The first order unimproved gradient technique with W chosen
as an identity matrix was tried first. Diffe_rent distributions
.such as uniform distribution, rampdist?ibution,up?méfggﬁfqiigi;wzn_““mﬁﬂ_Jkﬁmw_
distribution were used as an initial guess. The probleﬁ of
sensitivity was immediately félt since they did not converge to
a single distribution. |

Thé unimproved first order technique ﬁith W aé an idenfity'
‘matrix indicated tﬁat with different initial guesses the itera-
tions moved the distributions in the same general direction, but
the sensitivity problems prevented them from converging to a
single distributioﬁ. Also, the simultaneoué convergence of ¢ and
Q was affected when the &1 estimates were trupcated (see Appendix
B). The algorithm described in Chapter ulfof'the improved first
order technique is an attempt to correct these defects. The

method seems to work satisfactorily.

The unimproved first order technique with W as an identity
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matrix is used until the improvement in ¢ becomes smalle Then
we branch to the method using (2;4.9)‘as weighting factor, which
is the improved gradient techni?ue.'

The optimal distributions obtéined from the computer are
quite noisy. (The reasons are described in the‘nexé chapter.)
Fig. 2.11 is the noisy output from the’cbﬁputer. Fig. 2,12 gives
the filtered version., The rest of the figures presented here
are the filtered versions of the computer output.,

In order to check the dependence of the final distributions
on the initial guess, two widely different sets of distributions
are selected as an initial guess. in each case the lquth of
the line is 1.

Case 1: The initial distributions are

r(x) = wel(x) = 0,325
The final distributions are given in Fig. 12,

Case 2: The initial distributions are

008"‘0.08

r(x) = 0.8 - ( )%
we(x) = 0.08 + CQLE:QLQE)X

The final distributions are given in Fig. 2.13.

The comparison of the results recorded in Fig. 2.12 and
Fig. 2.13 shows that in both cases the di§tributions converged
to the same set of final distributions. This indicates that the
algorithm derived here is quite insensitive to the choice of the

initial distribGtions,
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On the op?imal switching curve in between the boundafies,
ﬁu should be idéntically ZEero, Thg observedrvalues of H, at
the start of the iteration and at thé end differed by a factop‘
of about 1000 indicating that f%eifirst distributiops are very
close to the optimum. Py

Figures 2,14 through 2.18 giveithe‘results for different
gssumed length 'L*'. In each case the stapting distfibuéions
are fakeﬁ to be uniform and inductance z(x)¥o{ Table 2 summarizes
‘these results. Figure 2.19 ploté the éptimum attenuation as a
function of the‘line-lgngfﬁ.

For the second Set»of fésulté we assumed different values

for inductance £{(x). As stated before.z(xj was assumed to be non-

controllabie and constant.
Figures 2,20 through 2;22-present the optimal'r(x) and e(x)

" for different 2(x). Table 3 summarizes these results.

Fiéure 2.23 shows the distributions obtaineé‘by usipg secéAd

order gradient technique,



89

|

. 0=(X)% ¢9=1 *SNOTLNEIYLSIA TYILINI QIHNSSY
INTIIIJIT ¥0J SNOILNEIMLISIA TVNIL ANV TIVILINI

ﬂﬂ.m TNOTI
0=(xX)¥ ¢ 9=1
uoTINGIIIST TRUTI *(xX)om - Yy - uoTANQTIISTQ Teury ¢ (x)ax - q
UOTINTAISTQ TRTITUI ¢ (X)oM = P - UOTANTAISTQ TeTITUI ¢ (X)X - 2.
18 ——x]o | 76 ——X|p
(— | | ™ .
| -
180. 480-
|
| “
‘A .
4 1. * -1t
-mhm 49
: B
{
I S -
i
- ..I!mll.\ 0_?@.




80

v 0=(X)% .hwq ¢ SNOILNEIYISIQ IVILINI QIWNSSY
INTIIIIQ ¥0J SNOILAGINISIA TVYNIJ ANV TVILIINI

ST*Z TANOIJ
]
0=(X)¥ ¢ L=1
WOTINGTIISTE TRUTI ¢ (X)x - q

y
P UOTANGTIISTA TeTITUI ¢ (X)x - ®

UOTINQTAISTQ TRUTI ¢ (x)oM -m
|
" . 1
_

UOTINQTAISTY TRTITUI ¢ (X)oM -

.

T ¢ —=—X,0 1§ =~—Xx]0
| I ’ o i - } :
180. 1 80-
12 W Jz.
| |
1 i |
R . __ b.
| .
| | |
w | |
I N
L P 1¢o. o | 1¢o.
\
J 4 1g. I dg.




91

0=(x)7 *6°6=T ‘SNOIINGI¥ISIA TYILINI TIHASSY
INTYIIIIC Y0J SNOILNETYISIA TVNIJ ANV TVILINI

9T MNOIJ

05(%)7 ¢ 6°6=1 |
SR UoTINGTIIST TRUTI “(X)x - q
uoTAINQTAISTQ TeTITUI ,ﬁxvg -2

UoT3INqIA3sTQ Teur] *(x)om - 4
UOTINQTIISTQ TBTITUI ¢ (X)om - P

S Y | |

7. ¢ —=—X|0 7 ¢ =—x|0
1 - i |

1 80.

42 _
i P 1Y : D
, 1 bt
M, 19
m

£ “ !
Ilg. 9




- 92

0=(X)T €LT=T *SNOILNGIYLSIC TYILINI QIHASSY
INTAIIQ ¥OZ SNOTINGTAISIA TVNI QNV TVILINI

LT°C NI
0=(X)¥ ¢ 6°8T=1

UOTINATIISTA TRUTI ©(X)oM = g

UOTINGTAISTQ Teurd °(X)ax - q
UOTINATAISTQ TRTITUL ¢ (X)x - ®

UCTANQTIISTQ TeTratul ¢ (x)om T P
g sl o ¢ =—x]o 7 gl ol ¢ ——x10
! ! . _ T = . ]
- 80- -~ 80-
— Sl- Gl.
— S ~4 -
— - -1
[
bika ~+9.
.m
~ 4 8. ...Il.llnlL\ -1 8-



93

0=(%)¥ “8T=T *SNOIINEINISIA TVILINI QIRASSY
INTYIIITA YOI SNOIINEIMISIA TYNIJ ONV TVIIINI

8T°'¢ RANDIJ

0=(X)¥ ¢ 00€=1
UOTANQTIISTA TeuTJ (X)om - y
: UOTINGTAISTY TRUrd *(X)a - q°
UOTINQTIISTE TBTITUI ¢ (X)OM pue (X)I - ®©

G¢e 0< Gi Gi S
— -

I ] T

o -

—— e e a,

r




10

4

£

o,

ot

H

= O

[o]

)

D
P

&

£

£

.,.46“

4

jon)

(@)

4 1 ] { | ! ] {

) 7 10 5 20 30 40 50
Length L -
FIGURE 2,19

OPTIMUM ATTENUATION AS A FUNCTION OF THE
TOTAL LENGTH OF A LINE

L



g5

(¥)¥ J0 JNTVA LNVISNOO QInOSsy,
Y0 SNOILNEIYLSIA TVNIJ ANV IVILINI

022 NOId
. 20°0=(%)¥ ¢ nT=1
UOTANqTaIST TeuTd °(x)°0 - Y uoTAINGIIISTE Teuri “(x)a - q
UOTINQTAISTQ TRTITUI °(X)oM - P UOTINGTAISTQ TRTITUL “(X)Z - ®©
. ’ l
1 ol G ~—X|Q L ol} S <—x]g
i T i ) ] ! )
. !.@O‘ J mo.
|
- N. r &-
p D
jgeg. G2g.
L 4. -t 7.

L
£

-

-
\‘\-‘




96

4

Ol

(¢)% 30 INTVA INVISNOD QIHASSY
404 SNOTINETYISIC TVNII NV IVILINI

G ~—X

60°0=(%)¥ ¢ #T=T
UOTINQTIISTQ TRULI (X)oM - (4
UOTINQTAISTA TRTITUL ¢ (%)oM - P

A

{

T WNOIL

UOTINGTAISTQ TRULy ‘(X)a - q
UOTINGIAISTA TeTITUI (X)X - ®

Ol

4 .
g <X

O

|

-

80-




(%)7 40 IONIVA INVISNOD QIHNSSY
403 SNOTINGTWISIQ TVYNIJ ANV TYILINI

97

Z2°C TNOI1a

T0=(%)¥¢ +T=T

uoTINQTAISTA TRUTI ¢ (X)om - Y

UOTINQTAISTA TRTITUI ¢ (X)oM ~ p

ol g —=—XI0

| i 7

UOTINQIIASTY Teurd ¢ (x)a -~ q
UOTINGIAISTQ TBTITUI “(X)x - ®

o s =—xlp
‘ ] . ]
. 80-
Q\\ 42
— ° ferdod
‘ A
|
do.
— m.




TABLE 2

THE INITIAL UNIFORM DISTRIBUTIONS FOR 180 DEGREE PHASE SHIFT
AND THE CORRESPONDING 'OPTIMUM' ATTENUATION FOR
VARIOUS LENGTHS OF THE LINE

P

Uniform distribution for Optimum attenuation

Total length - 180 degree phase shift, . with nonuniform
of line 'L!' wel(x) = r(x) distributions
6.0 W73 : 10
7.0 .63 8
9,9 o Ll _ 6.3
14,0 32 : 5.6
18.9 +235 T 5,3
30.0 W15 - 5.4
TABLE 3
OPTIMUM ATTENUATION FOR DIFFERENT VALUES'QF wl(x)
TOTAL LENGTH OF A LINE ‘L' = l&.O
Uniform line inductance Optimum attenuation with
wl(x) : nonuniform r(x) and c(x)
4] 5,6
02 4,2
«05 2.15
10 1.15

In each case 0,8 < r(x); we(x) 5 0,08,
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FIGURE 2.23

DISTRIBUTIONS OBTAINED BY USING SECOND
ORDER GRADIENT- TECHNIQUE



CHAPTER 3
3.1 Notched Filter Synthesis’

- Many situations occur in tgeidésign of an electronic'sysfem )
in which it is desirable to have frequency selective amplifica=
tion, i.e; amplify the inputs lyiﬁgvin a narrow band of fre-
quencies and reject all others. The selectivity isAacco;plishedl
by COmbiﬁing an amplifying element with a freqﬁency selective
filter element, The amplifying élemeﬂtvprovides amplification
for a wide spectrum of fréqﬁencies and the filter‘elémept”provides
the freqrency discrimination. One sgchvérrénggéent employing a

negative feedback loop is shown in Eig.-S.i;

==l AMPLIFIER —

INPUT QUT PUT

A

NOTCHED FILTER

FIGURE 3.1

BLOCK DIAGRAM FOR FREQUENCY SELECTIVE AMPLIFICATION

The overall gain of the system is given by
GS = - A/(1 + GA)
where -A is the gain of the amplifier and G is the transfer func-

tion of the feedback network. At a null frequency w, transfer

ratio G becomes'zero, thus effectively eliminating the feedback,

100
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The gain G of the system becomes -A.. As one moves away from
s G approaches unity and for véry large values of A the gain
Gg drops to minus unity.

P

A desired transmission characteristic for such’'a feedback

network could be as shown in Fig, 3.2 =

| — — ’
A Tl e
\\ 7 - lGd(le
~ /7 —s
G| - \\ ’ R lGh(w)\
v,/
\
FIGURE 3.2

FREQUENCY CHARACTERISTICS OF A NOTCHED FILTER

The transmittance curve Gd(w) shows the deéired notéhed filter

characteristics.
lGd(m)l = 1 for = Wy
l6 ()] = o for w = w, . (3.1.1)

A more realistic and attainable characteristic is represented
by {Gn(m)[ (Fig. 3.2). A physically realizable filter.with.

characteristics such as lGn(w)[ can be constructed [18].froﬁ
resistive and capacitive components. A éistributed parameter
configuration with frequency selective null characteristics is

"shown in Fig. 3.3,
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Y FIGURE 3,3

A DISTRIBUTED PARAMETER CIRCUIT FOR NOTCHED FILTER
The distributed part of the circuit is identical to the rc
filter shown in Fig. 1.1, A lumped resistance R is added in
series with the distributed éapacitance c(x). Again, induc~
tance %(x) is assumed to be a noncohtrollable parameter and
conly has significance at very high frequencies, Fuller'and
Castro [18] have assumed a uniform rc distribution. In order
to have & null frequency at Wgs the parameter values for such

s

a distributed rc circuit are

) 2
wor(x)c(x)L = 11.12
and ;

R = 0.0563 r(x)L

If the distributions r(x) and c(x) are hot reStric{ed to
uniform distributions but are allowed to take a free form, it
should be possible to improve the performance of the filter, In
the sequel we have kept the form of tﬁe distributions completely'

free except for the upper and lower bounds resulting from the
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prz;ctical constraints of realizability and triéd to 'cwbtain- the
distributions of parameters r(x) and c(x) that yield the best
approximation to the frequency characteristics [Gd(w)[ as in

: A
Figc 3.2, N
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3.2 Notched Filter Problem Formulation

- The problem formulation remaiﬁsléssentiall§ the same as in
Section 1.2, Given a sourge»voltage ain(w) over the frequency“
interval (-=,«), find the distribﬁtiéng rﬁx) and c(x) vhich
yield the output véltage aout(w) such that the frequency response
characteristiCS‘lG(m)l, definéd as
%out(®)

le(wy| = . -
o;n(w) (3.2.1)

is the best approximations to the desired response {Gd(w)l. The
voltages ¢g,¢(w) and ain‘w) aremrelated Fovﬁhe vgriables Yl, Vo,
Il; and I, which describe the §oltage and current relationships

along the distributed line. TheSe'éfei

Vi) = Vl(O,w5-+ RI(00)
Vs (8) = V,(0,6) + RIL(0,0) -,
Vlout(w) = Vl(L,w) + RIi(L,m), s
Vooue(®) = V,(L,w) + RIH(L,0) . (3.2.2)

The development from Equation (1.2.2) to (1.2.15) follows
along the identical lines, The state variables, control variables
and the state equations depicting the behavior of the distributed
‘line remain the same, However, the addition of lumped resistance
R alters the form of the criterion functional. The problem can

be specified as
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a—y. = Ay = f(u,y) (3.2.3)
with A defined by (1.2.10a),

uwt = [r(x), c(x)]
and - o !

yi(x=L) = [a,0,0,0] , (3.2,4)

£ind u such that

J = m:n¢ . ‘(_?.2.5}
where

¢ = /7 F(ylow)) & (3.2.6)
and o . -

F(y(0,6)) = [|e (| - few|["]| (3.2,7)
subject to the constraints

r r(z) <oy
and

cm S C(X) .,< CM s (3.2.8)

From the definition (3.2.1) and relationships (3,2.2) we can
9 _ .
exXpress [G(w)[ as a function of R and the terminal values .of

the state variables Vi, Vo, Il,‘and I,.

lewl® - (V3 (1) + I,000R)% + (Vp(L) + I,(0)R)?
(V300 + I(0)R)” + (V,(0) + I(0)R)® .
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Substituting for the boundary conditions from (3.2.4) we obtain

-, 0.
o~ @ F YL(0OR) + (y,(0)R)
letw [ =

(yl(0)2+ fSSO)R)‘ + (y2(0) + yu‘(O)Rj2

1

(3.2.9)
In order to make the problem tractable with the help of

computers the limits on w are set as O

criterion function is discretized in w with A as a quantum for

discretization., (See Fig, 3.4)

B :\//\///_
ui 1> E ' ////
| 4
T S

FIGURE 3.4

DISCRETIZATION OF THE FREQUENCY CHARACTERISTICS OF A NOTCHED FILTER
With these modifications the expressions (3.2.6) and (3.2.7)

reduce to
¢ = AT F(y(0,09)
wi '.
. 2 2
= a1 || eytep | - letup !l (3.2.10)
W ,
i

1

mization of ¢ implies the minimization of the area shown hatched

vhere i takes all the integral values from -m, to mys, The mini-

in Fig. 3.4. However, since the point discontinuity in Gy(w)

at W does not affect the total hatched area, the criterion

.
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functional ¢ cannot differentiate between the following "desired"

characteristics;
(i) Gd(Q) = 1 at w = Wy »
= 0 { .g'at' w = wo 9
and ,
. . B ’ t
(i) G4lw) = 1 for all v .

Under these circumstances the minimization procedure may produce
a notchless flat characteristic, One way of overcoming this

difficulty is by imposing a rigid constraint such as

ly(0)] = F(y(o,m ) = [G(wo)[ = 0 . (3.2.11)
He will use Improved First Order Gradient Technique for
tackling this problem. Ve seek a du(x) that will give a speci-

fied improvement d¢. From expréssion (3.2,10).6

4

d¢ = P dF(wi) 9 i = "ml,n.o‘,"'l,o,l’tlan' .l

llJi . 3
(3.2,12)
The function F(wi) is the measurement of the error, or deviation
from desired characteristics at frequency Wy Thus, dF(mi) is
a variation in error at w; o Starting with equation (1.3.1) one

can follow the development up to (1.3.22), obtaining

dF(mi) = f Hu(x,wi)éu(x)dx . (3.2.,13)

5The multiplying factor A will not in any way affect the
minimization procedure and hence can be dropped at this point.
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The expression (3.2.12) giveé variation d¢ as a weighted sum of
the variationsmdP(wi); the Qeighting is uniform.in thié case.
Appa?ently the summation over ws wili suppress the information
available in equations (3.2.13)’regérding the behavior of the
frequency cﬂaractepistics at each Wi .It'is not necessary to
loose this information. Instead of'specifying d¢ and ietting
the weighting factors distribute the correction over wi, ve
,cquld specify each dF(@i) separately. Thus, we will be specify-
ing the entire contour of the improved freéugncy chéégéteristics._
This amounts Fo specifying'(ml+m2+l)dp(wi)'and having (ml+ﬁ2+l)
equations, as specified by (3;2.13), tonse compliéd with at
every iteration cycle. Bquatioﬁ (3.2;%£5 isApnéféflthese‘
(ml+m2+l) equations. As will bq_épparent_iater, we pay'tﬁei
ﬁrice by having to solve (mi+mé+l) simultanecous equations to

obtain the required variation in control Su.
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3.3 Method of Solution

The system being linear, its behavior at any frequency wj,
can be studied independently. Thus; we have (mi+m2+l) indepen#

dent system equations R
‘ . N ’ . P

§§ y(x,wi) = Alx,w;)y(x,u;) ' s S3.3.l)
with boundary conditions
ytxeL,w;l = [2,0,0,0] . 1(3.3.2)

There are (ml+m2+l) adjoint eéuationé

g;{- . A(x,wi) = —At(x,mi)l(x,wi) ’ ' o (3.3‘3) .

with boundary conditions

AE(x=0,6,) = -F| . (3.3.4)
* Y x=0 -

and H(x,w;) in (3.2.13) is given by
H(x,wi) = A?(x,mi)AFX,wi)y(x,wi) . (3.3.5)

We seek 8u that satisfies (ml+m2+l) equations specified by
(3.2.13), The values of dF(w;) are chosen so as to improve the

frequency response characteristics and

dF(wy) = -Fluy) .

As in Sectjops 1.3 and 2.3, an accessory minimization problem
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can be formulated with Su as a control variable. We can write.
the composite criterion functional.

v = L reutwsuax + I Q.[dP(w.) - [ H (w:)éudxl , .
2 g o e (3.3.6)
where v, are undefiﬁéd Lagrénge multipiiefs. »Tﬁe EGler Lagrange

Equations for this minimization problem yield

1 '
fu = W [Z viHu(wi)]

i ——
Define
"6ui- = w‘lnu(m'i) (3.3.7)
Hence | e S
Su = Ity R (3.3.8)

1

Thus, 6u is éomposed of (ml+m2+l) components 5ui and. correspond-
ing stepsizes v;. Substituting (3.3.8) into (3.2.13) we obtain

the simultaneous equaticns in vy

i MNS

dF(wi) = 5

j=-my _

For a nominal control vector u,'(ml+m2+l) system and adjoint
equations can be solved and'Hu can be evaluated as defined by
(3.3.5). The shape factors "5ui" can be evaluated from (3.3.7).
Thus, the equations (3.3.9) become a set of simultaneous algebraié
.equations in vy |

The iteration algorithm is similar to one presented in Part

A of Section 2.3. The details of the algorithm are covered in
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thg following section during the description of the computer
flow chart. |

The same difficulties of c?nVe?gence as described in Part-
A of Section 2.4 are facéd‘heree 'As:soon as the control feaches
the boundary values énd u+5§ starts_éeétiﬁg trdncatéd, the
improvement in criterion function does nof correspoﬁd to the
stipulated values of dF(mi)..'It beéomes necessary to use the
"shaping factor" or.'"the convergence factor" W(x) other than

-the identity mat.rix. Let the estin;ate of {(a;c’iation in control
after truncation be éu' (see Fig. 2.10), then tﬁe‘cénveréénce

factor W is chosen to be C L Ll

(ry-r.) ' }
|srt| [_.._.I:_.nz._ X+ rp

s | [
Ject] [Cﬁ - CMLCm X]

(3.3,10)
With this definition of W“l a second estimate of gui is obtained
from (3.3.7) and hence a second estimate éf v; from (3.3.9).
Equation (3.3.9) yields new Su. The revised estimate of the
control u+du is checked for bounds, truncated if necessary and

accepted as an improved control. The program then starts a'new

iteration cycle.
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3.4 Computer Program

The iterative solutions are obtained on the Hybrid Computer
using the improved first order gradient technique.
(i) Analog Patching

The‘system proper is described by

»

Sy = - Alze)y(zu) (3.4,1)
with the boundary conditicns

yt(z=0,wi) = [a,0,0,0] , (3.1.2)
where

Z = (L’X) .

The adjoint system equations are

d L gt ‘
-(-1-;{- (xsmi) - A (X,mi))»(x:mi) . (30403)~

With the transformation7

Y(x,ug) = BAx,00) T (3.4.4)
where ’
0.2 0.0, 1
_lo.07 1 o
B = 1o 1 o0 o
h 0. 0 0

7See equation (1.3.10).
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the equation (3.4.3) reduces to

g.gy(.x,wi) = .,A(x,wi')y(x',wi) . (3'.4.5?

. ( »
The form of these equations is identical to (3.4.1). Thus,

with a proper choice of variable coefficients and initial condi-
‘tions, the same set of equations yield the solutions y(z,mi) and
A(XQ wi)O 4

The boundary conditions for A(x,mi) are obtained from

(3.3.4). We have already defined the error function

Plu) = [6yCul) - 6ud)|

R lGe,E”})[” e L

We will need a set of concise definitions in order to keep

the algebra straight. Thus, let us define for every w

DTR (_yl(x=0)+y3(x=0}R)2 + (y2(x=0)+y‘u(x=0)R)2 ,

NTR

(aty,G=0)R) + (,(x=0)R)® .

Then equation (3.3.4) gives the boundary conditions for A at

%x=0 and w=w:

p R
] NTR(y '(o)+y3(o)R)
200) = -~ 2 sgn (Ge) 1 Y ’
‘ DTR :
NTR(yz(O)‘ryu(O)R)
2,(0) = -2 sgn (G)) 7 s

DIR



114

DTR(a+y3(O’)R) - NTR(yl(0)+y3(0)£{)

A,(0) = 2 sgn (G)) , >
3 € DTR”
B DTR(y (O)R) - NTR(y2(0)+yu(O)R)
2, (0) = 2 sgn (G) M 5 .
DTR
(3,4.6)

The analog computer patching is given in Fig. 2.6,

(ii) Flow Diagram

The algorithm used is similar fo one described in Part A
of Section 2.k, AThe flow chart for the program is given in
‘Fig. 3.5. Thé detailed explanation for the flow chart is as
follows,

rBléqk ;: P?eparatory Steps.,

The input output channels are reset; the data, such as'.
the bounds on the control variables, etc. is read in. Tﬁe
initial profiles of the control variables are loaded into the
nemory. ’ |

‘Block 2: Soiving the system equation on Hybrid Unit.

For each value of w; the elements of matrix A(z,w;) are
evaluated. The initial éonditions are set up as given by
63.4.2), The equations are integrated backwards in space on the
analog computer. The system variables are stored in the memory
of the digital computer. ‘The quantities [G(éi)l and hence F(wi)
lare obtained from (3.2.9) and (372,10). In all (ml+m2+l) sets

of equations are solved -~ one for each ws s The values for

dF(mi) are chosen so as to drive F(wi) towards zero, The rigid
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(AT

Y. Initial Setting

%

B 2. Solve systém equations, df(wy) |
Check dF(w;). Set new 71 too Yes~
dr(w;) small? Exit
Store | . 3. Solve adjoint " | No
A(wi) - equations for A(wi)

4, Evaluate the first
estimate of Su; and

- vy, hence 8u., “Check
“utdu for bounds
5. Obtain second

estimate of du,

an? vy

Y
6. New &u and utdu.

Check for bounds

FIGURE 3.5

COMPUTING ALGORITHM FOR NOTCHED FILTER DESIGN USING
IMPROVED FIRST ORDER GRADIENT TECHNIQUE '



con;traint at gpll frequency is taken into account by setting
dF(wy) = =Flug). .

Block 3. Solving the Adjoint Eciuations on Hybrid Unit.

For each value of wy the eieﬁeﬁ#s of matrix A(x,wi) are
evaluated, The initial conditions are ‘set uﬁiaﬁ given by
(3.4,6)., The equations are integba{ed‘forward in spa;é on‘the
analog computer. The adjoint_variables are“stored in tﬂé memory‘
of the digital computer., The same ahalog pnogfam thaE_is used
for the adjoint system with the fransformation of variables
_given by (3.4;4). In ;ll'(mlfm2+l) sets_of equations ape'SOIVed
-for eaqb Qi. | _. - .A.

Block 4. First Estimate of dufv-.

Assumingnw to be én identityJﬁatrix Gﬁi is qbtainéd from
(3.3.7). Simultaneous equafioné (3.3;9) are solved to obtain’
vi. The first estimate of Su is obtained from (5.3.85. The
new control utsu is checked for bounds and truncated if
necessary, thus obtaining éu' (see Fig. 2.10) as an allowabie
variation in u.

Block 5: Second E;timate of Su.

The matrix W'l is evaluated from (3.3.10). With this value
of w”l,'ﬁui, v;, and Su are evaluated from (3.3.7), (3.3.9), and
(3;3.8) respectively. This is a second estimate of 6u. The .
program uses the first estimate of du until the control reaches

one Of the bounds. When the control reaches a limiting value

the estimates of dF(wi) do not correspond very well to the actual.

»
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improvement effected by the updated -- and truncated -- control.

At this point the program begins to obtain a second estimate --
using matrix w=! from (3.3.10). .

The u+éu obtained from thik second estimate of .&u is-
checked for bounds and truncated if Aeces§ary. ;The.ppogram‘now

braches back to Block 2 for the next iteration Joop.
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365 Numerical Solutions

The numerical solutions were obtained on a Hybrid Computer.
As a particular example, the ragio of rM/rm and CM/Cm is phoseﬁs_

to be 10, The limiting values are chosen to be
. o7 t -

u

ry wWoCy = f8
rm c wocm = ,08 (3.5,1)

where wy is the mull frequency of the notched filter.

To start the itérati&e procedure the nominal distribufions

are assumed tc be

r(x) = wyelx) . 0,852

wh(x) = 0 (3.5.2)

and

R = ,198

The length of the line L is held coﬁstant at 10 units. These
values are obtained from the results reported by Fuller and
Castro [22].

We have considered only three p?ints in the frequency domain,

%.mo, m&, and 2w Thus ws takes only three values

0

8See Section 2.5,
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I
W i 7 'é" Lllo 3
wy =Wy .
W= 20 . b

. o ! . i
It is observed that for a given variation in su the variation
dF(wi) moves in the same direction in the frequency range

wo < w; S 10 wye The same holds good for y; >

4 mi> 5 Wor
Thus, %-wo, wy, and 2u, give a good(representétion of the
frequency responée characﬁeristics in the raﬁge és-wo té lQ'QO.
The final "optiggl" distributions are given in Fig. 3.6,
The distributed inductance %(x) is assumed to be zéré. During
the iterations Hu dropé dovn bi'a facto; of about 500 indicating
that the final distribufions aréfvery closé to the ?oﬁtimal".
. Figure 3.8 gives the frequency response charactérisfics for
(i) initial distributions as given by (3.,5.2) and (ii) the
“final" distributions as in Fig. 3.6.
Figure 3.7 gives the initial and finai distributions for a

case whers mol(x) = ,04,; The distributed inductance is assumzd

to be constant and hon-controllable,
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CHAPTER 4

Errors and Limitations s

A, Scale and Range

The analog computer is a 10 volt machine, The DAC is a 10
volt unit with 14 bits plus a sign bit and the ADC is a 10 volt
. unit with 13 bits élus a sign bit. Thﬁs,.the lowest voltage
level that the setup can handle is about 2 mv, as decided upon
by the ADC. Any voltage level below 2 mv is iﬁterpreted as a
zefo by the ADC and the voltage levels above 10 Qolts are either
rejected by the converters or cause saturation of the amplifiers,

Thus, the dynamic range of the setup is leO?.

B, Noise
(i) Random Noise ;— TheriﬁdiViAuél component of thé
system has a specified noise level as given below.
ADC - the noise level is #1 bit, equivalent to about %2 mv,
DAC - the noise level is negligible,aé compafed to that of
the ADC and analogvcomputer, |

.

Analog Computer - the nonlinear multipliers have the high-

est noise level, It is specifiéd to be +3 mv., However, when
éhe transmission line equations were integrated a number of times
using the entire Hybrid setup, for the same distributions r(x),
c(x) and £(x) the end point values of the voltage Vl(x) were
found to be repeatable within 20 mv,

(ii) Quantization Noise =-- The ADC while reading the

results from the analog computer quantizes them. The random
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noise is supérgosed on top of this quantized signal. Iﬁ tﬁe ]
algorithms these readings are operated upon and amplified ~-
‘especially during fhe last part of the iteratioﬁ -~ geveral
times, Thus, 2 mv quantizatiog stép‘and about 6 mv' noise can
cause a poise level in the range of a hundred mv. TFigures 2,12
through 2.22 are the smoothed out versions of the computer
output. AFigure 2.11 is that of an oniginal‘computer output.

The noise problem becomes more serious with the complicated

algorithms involving large numbers of algebraic operations.

For this'neason, the algorithm should be as simple as poséible.

C. Limitations of the Method

Hu is a smoothly varying function. Thus, every variation . ...

in the control has a continuous first derivative in the open
region, If the optimal distribution has a discontinuous first
derivative and the initial estimate does not, the solution will
not converge on to the optimal. Aiso if the iﬁitiél guess has
a discontinuous first derivative, we can never get 'rid of this
discontinuity in the open region. In the present case, the
uniform, ramp, exponential distributions all converged'to the
same distribution. However, when the initial guess was é bang
bapg type of distribution, the final distributionvretained the

discontinuities in the first derivative.

+



CHAPTER 5
CONCLUSIONS

As stated in the Introduction, the aim of the present study
was to.develop a téchnique for Fhe,synthesis of the 0ptimél
distributed parameter systems, such as a transmission line,
where. the parametefs are bounded. The probleﬁiis formulated as
an optimal control problem with the paraﬁeter distributions as
the control variables. The gradient technique was preferred to
all other approaches»because Qf its property of stepwise improve~
ment in the criterion function. The hybfid computational tech-
nique seems to be best suited for the gradient method (see
Section 2.5). . .

In obtaining the optimal distributions of the parameters
r(x) and c(x) using the first order gradienf technique, two types
of convergence problems were encountered.

(1) Sensitivity: As described in Part A of‘Section 2.4,
the ratio. of the components of the sensitivity function Hu and
the total desired veriation uopt—u may vary considerab}y over the
range of x. In the case of a onemdimensibnal control vector,
this ratio is a good indicator of the degree of convergence with
respeét to the number of iterations required to pegcﬁ Wsuffi-
ciently" close to the optimum., A constant ratio can be compen-
ééted by a proéer choiée of the factor W. This presumeé some

knowledge regarding the system behavior and the nature of the

optimum distribution.
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i?) Truncation: The bounds on‘:the control variables
require that the variations in tﬁe‘cqntrol variables be restrained
wherever the contrél tries to %?oss the bounds. This gives rise
to fhe convergence problém descriged-in Section 2,4;.Part‘A,
Again, a proper choice of W matrix één:eliminaée tﬂis problem.
The first estimate of the variation can be used to 6bta%n the

weighting factors in the form of W‘l. These factors can be used

to obtain a second estimate of the reqqired variation.

‘With the bounds on resistance'and capécitance decided upon
vby the fébridation limitafiogs, and the length prés?ecifiéa, the
optimum 18C degree pﬁase shift petworkvwitﬁ miﬂimum éttenqation
turns out to have distributions of r ard ¢ that have limiting |

values with the singular switchi_ng éuﬂes; o

The attenuation of uﬁity,_as projectedhﬁy Johﬁéép and
calculated from Edson's results is ﬂot realizable due to the
physical limitations., ‘ |

The optimum éttenuation is not far better éhap wﬁat can be
achieved by exponential distributions given a free cholce of
length.

With the bounds on resistance and capacitance decided upon
by the fabrication limitations, and the length preépecified, the
optimum notched filter with the configuration as sﬁown in Fig. 3.3

.turns out to have distributions of r and ¢ that have limiting

values with the singular switching curves.
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H, is a smoothly varying function. Thus, every variation
in the control has a continuous first derivative in the open
region, If either the optimal disfribution or the initial guess
has a discontinuous firstAdefiVAtiye in the open region, one
should expect probléms of conver'gelncé° =Iﬂ the cases presented’
abo§e9 the same final distributions Wereiébtained whether one
assumes an initial uniform'distributioﬁ ér an initial ramp distri-
bution. However, when the ini%ial guess vas a bang bang type of
distribut;on, the final distribution retaiﬁeq the diéégﬁtinuities
in the first derivative. |

We have shown here>that it is possible to obtain a solution
to a "singular" optimization préhlem by dsing'the~ImprOVed'
Gradient Technique developed here. It is épplicable to a large

spectrum of problems in the transmission processes. .
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" APPENDIX A

Hybrid Computer System

This is a comﬁination of the analog and digital computers.
We have EA1680 analog computer and IBM7700 digital computer
with input-output éubchannelé for the tr;nsfef1of the informa-
tion. In order to transform this setup into a Hybrid umit, we
designed and built the interface. Figure A.l Qhows the flow
diagram for the ﬁybrid unit.

(i) Digital computer: The digital computer contains the
multiplexor c%annel, channel B, It permits the attachment of
different data acquisition and data distribution devices to the
processor of the diéital computer, The inpuf subchannels of .- - - — - —
channel B are capable of recording the’logic levels == true orj
false -- of the incoming lines and the output subchannels can
send the desired logic levels on the output lihes.‘ The opera-~
tion of channel B ié controlled by fhe central processor unit.

(ii) Interface: The interface provides the medium of
communication between the analog computer and digital computer. -
It is essentially a translator unit. The function of the various

sections of the interface are described below.

Oﬂeration Control of the Analog Computer: The operation of

the analog computer is controlled by the coded logic signals sent
from the digital computer, The interface converts the input
logic levels and also generates the clock'pulées required for

certain operations,
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The operations controlled are as follows:
(1) Operate (Integrate), H&ld, Initial condition, etc,
(2) Analog gomponent selc}ion for readout or potset{
e.g., Amplifier, Trunk, Pot, etc.
(3) Time constanf selection, e.g., Seconds, Millisecoﬁds,
etc, | .
(4) . Digital mode selection, e.g., Set, Clear (Registers,
Counter), etc.
(5) Digitai clock rate selection

(6) Selécting the address of the analog component

(7) Setting a pot coefficient -

<

Analog Computer Monitor: The coded logic signals comipg.from
thé monitor of the analog computer are transmittéd to the digital
computer. The digital computer compares the control crder with.
the monitor signal to find out whether the execution is proper?

Logic Signals: Certain decisions made by the digital computer

regarding the status of the program under execution are trans-
mitted through interface to the logic trunks. These signals can
be used to effect a change in the analog computer program,

Sense and Interrupt: The status of the analog coumputer

program such as a comparator output is conveyed to-the interface
on the sense lines. The interface in turn transmits the message
to the digital computer, The interrupt lines are used for convey-

ing the undesirable status of operation such as overload. The
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analog computer is programmed to interrupt the operation under

such conditions.

Digital to Analog Converter: This is an eight channel
serial input, pérallel oﬁtput d%i%: ~The control signal‘ffom
the analog qomputer:initiates the cq;vérsion of thefdigital data
on thé input lines fréﬁ the digital cemputer into the analog
signal. The analog signaiiéppears on the channel selected by

the control word from the digital computer. The output channels

are connected to the DAC trunks on the analog computer.

Analog to Digital Coﬁverter:' This»is‘a 24 éhaﬁnel parallel
input serial output ﬁnit. It rgceivesAthe»énaiog»input f:om
the ADC trunks. The control wad_from'the_digital computer
_ selects the channel and initiates the conversion. ATgé-digital
output is transmitted to the digital computer., o

(iii) Analog Computer: The analog computer can be divided

into three sections,

Analog Section: It consists of the énalog components such

as integrators, summing amplifiers, track and store amplifiers,
etc. ADC trunks receive the inputs from this section and DAC
trunks supply the analog signals to this section.

Logic Section: This section contains the logic elements

such as gates, counters, ﬁegisters, along with the clock outputs
.and control inputs for certain analog components. The sense
and interrupt trunks receive the inputs from this section. The

logic trunks appear in this section.

.
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i

Operation Control: This section controls the operation of

_bofh the analog and logic sections. It controls all of the !
operations listed under "Operation Control of the ACY" in the

description of the interface. &t fe;eives the ccded~control

word, either from pushbuttons or from the interface, It also

generates the monitor signals.

Hybrid Operations

The two important links in the hybrid setup are the DAC
and the ADC.

2&9& The output subchannel of the digital computer transmits
the digitized value of the variable. The load command from the |

digital computer loads the word into the registers of the DAC,

However, unléégrthe.igé channéi fééei?esréﬁéwenéble égmmand, the
analog output does not appear at the output terminal of the DAC.
The previous value is retained at the output until a new enable

command is received. '

ADC: The digital computer selects the ADC chanﬁel by
controlling the multiplexor switches. The conversion of the ana-
log signal on this preselected Ehannel is initiated by the start
pulse. On completion of the coﬂversion a ﬁulse is sent to the
input subchannel of the digital computer. On receiving this
pulse the input subchannel registers the digital output of the
ADC. This is subsequently transferred to the memory of the

digital computer.
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Setting up initial conditions and static test:
The operation control ;ﬁbroutine sets the analog computer
in the "set pot" mode. The proper a&dress word selects the
,desifed servo-controlled pot. %heyvalue register is loaded and
the servo start pulse transmitted from the digital computer.
The monitor subroutine checks if the proper pot has been selected '
and the operation completed. Thus, the initial conditién -IC~
is estabiished with the help of servoset pots.

The analog computer is then driven into the IC mode and
outputs of amplifiers are read on the ADC. This gives‘thé static

teste.

-Integration routine: Avsubchahnel of the digital computer

is used for staftiﬁé.andm%éfﬁiﬂéfiﬁgdfhé‘iﬂfégfation<5peration.
Selection of the counter SC turns trunk "OO‘-t (Fig. A.2) on and
the analog computer goes into "operate" mode thus starting
integration., At the same time, the‘analbg computer counter
starts counting analog computer clock pulses and gives the‘outn
put as in Fig. A.2. The monostable multivibrator &Fig. A.3)
~generates a pulse every 1000 sec. which generatés a dﬁgital
computer interrupt. The digitai computer counts the‘number‘of
such interrupts. As soon as the digital computer counts a
specified number of pulses, it deselects the subchannel terminat-
ing the integration operation and driving the analog computer
into the IC mode. The pulse from thé monostable multivibrator

also starts the conversion and enables the DAC channels,
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Before the start of inﬁegration:

(i) The analog computer counter is reset;

(ii) The analog computer clock mode is selected (such as.

10 ke, 100 ke, 1000 ’kc); )

(iii) The ana;og computer time constant is sélected (such

as seconds, milliseconds, etc.);

(iv) The values of DAC functions for the second interval

are loaded.

(For the oscillator problem, the clock mode was 1000 ke and
the time constant was 0.1 sec.)

Now the integration is started by selecting the counter SC.
Figure A.% describes the flow of events. )

As the first counteripulse comes in, it enébles all thé-DAC
channels. Thus, values of all the coefficents for the sécond
interval are made available, All the track and store amplifiers
~go into store mode thus preserving the values at fhe instanf of
the counter pulse.- The digital computer now selects and reads |
the ADC channels one by one. This is followed by serial loading
of DAC channels with the values‘for the next interval. This
éompletes the operations for one interval and the digital computer
waits for next counter pulse. The process repeaté until the

counter SC is deselected,
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APPENDIX B

Truncation and Convergence

For a system represented by

4y = E(y,u.,x)
ax .

with criterion function ¢(y(0),y(L)), the functional relation-
ship between a variation in ¢ and the variation '$u' in control :

u is obtained as (See equation (2.3.31))

a6 = SPuoeuax . (B.1)
0 u

Let us assume that ¢ is to be maximized. In the gradient
technique the hope that the iterations would converge is based
on obtaining a posifive d¢ as a result of every iteration cycle.

Thus, we can stipulate three necessary conditions for §u(x),

(i) sgn su(x) = Sgn Hu(x), for a finite length, and
Su(x) = 0 for the rest of x. .This assures d¢ 2 O, (B.Q)
(ii) u, S u(x) + dulx) < uy
(iii) fL < su(x)sulx) > dx << "1
0

This assures that the variation su(x) is small enough to justify
the first order approximations made in the derivation of (2.3.31).

Let us define

u. - ulx)

m 6um(x)

and

H

uy = ulx) Suylx)
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The bounds on Su(x) can now be specified as

<
Gum 5 Su(x) = §uM .
14 s

Since u(x) is an admissible control vector

u S oulx) fou

m M ¢

Hence
6um(x) < 0
and

éuM(x) > 0 .

Let su(x) be any function that satisfies the first and the
last condition stated in (B.2). (See Fig. B.1l). The function

Su can be expressed as a sum of a function Gup and‘éun such that

iv
o
»

Gup(x)

du (x) = o
and

Su = Gup ¥ 5un .

The variations 5uP and Su, also satisfy the first and the
last conditions stated in (B.2). The functions dup(x) and -

5un(x) can be further divided so that

"

6up(x) Gupa(x) + éupt(g) .

u

8y () L,

éuna(x) + 6un
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where Supt(x) and Gunt(x) are the truncated sections of 5up and

Su_ respectively.

n
He have
14 *
' 8gn 6up(x) = Sgn dupa(x ,
and
Sgn su (x) = Sgn suy,(x) )

Thus Supa(x) and Guna(x) satisfies the first and the last condi-
tion stated in (B.2). They also satisfy the second condition
(See Fig., B.1l).

The same is true about éua where

P& —

Sugle) = Supa() ¥ fug ) (5.9)

The function Su_(x) is a truncated paft of Su(x). Hence the
truncation does not violate the conditions for conVergenée of
the gradient method.

However, with more than one target function,; such as ¢ and-

Q, Su is composed of more than one component such as
Su = vosu® + ysul (B.4)
and the functional relationship is (See (3.43)).
= 6 L hi,d Q L yée, Q4
dé v 6 H%Gu dst + v 6 Huéu dx (B.5)

In such a case v affects dé¢ (and su® affect dQ). The con-
dition (i) holds true for the first term on the R.H.S. of equa-

tion (B.5). However, the second term does not necessarily
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safisfy the condition (i), Besides,.su? and su® are not trun-
céted separately. The truncatioh_of'su does not provide any
information as to how the truncation affects the components

su® and su®, Thus the argumen; ébéut convergence breaks down.

It is observed during the numerical calculations on computer
that before the control distributions redch the limiting values,
the first order gradient technique (using first estimate of &u)
yields improvement in both ¢ and Q simultaneously. However,
once the control variables reach the boundary only one of the

two improves »and the other starts deteriorating. Tﬁuss a

simultaneous convergence breaks down.



